fbpx
วิกิพีเดีย

การยกกำลัง

การยกกำลัง คือการดำเนินการทางคณิตศาสตร์อย่างหนึ่ง เขียนอยู่ในรูป an ซึ่งประกอบด้วยสองจำนวนคือ ฐาน a และ เลขชี้กำลัง (หรือ กำลัง) n การยกกำลังมีความหมายเหมือนการคูณซ้ำ ๆ กัน คือ a คูณกันเป็นจำนวน n ตัว เมื่อ n เป็นจำนวนเต็มบวก

คล้ายกับการคูณซึ่งมีความหมายเหมือนการบวกซ้ำ ๆ กัน

โดยปกติเลขชี้กำลังจะแสดงเป็นตัวยกอยู่ด้านขวาของฐาน จำนวน an อ่านว่า a ยกกำลัง n หรือเพียงแค่ a กำลัง n ในภาษาอังกฤษอาจเรียกการยกกำลังบางตัวต่างออกไปเช่น a2 จะเรียกว่า square และ a3 เรียกว่า cube เป็นต้น เมื่อตัวยกไม่สามารถใช้ได้เช่นในข้อความแอสกี ก็มีรูปแบบการเขียนอย่างอื่นที่ใช้กันอาทิ a^n และ a**n เป็นต้น

เลขยกกำลัง an อาจนิยามให้ n เป็นจำนวนเต็มลบก็ได้เมื่อค่า a ไม่เป็นศูนย์ ตามปกติไม่สามารถกระจายจำนวนจริง a กับ n ได้ทุก ๆ ค่าโดยธรรมชาติ แต่เมื่อฐาน a เป็นจำนวนจริงบวก จำนวน an สามารถนิยามเลขชี้กำลัง n ได้ทุกค่าแม้แต่จำนวนเชิงซ้อนผ่านฟังก์ชันเลขชี้กำลัง ez ฟังก์ชันตรีโกณมิติก็สามารถเขียนให้อยู่ในรูปของการยกกำลังได้

การยกกำลังที่มีเลขชี้กำลังเป็นเมทริกซ์ใช้สำหรับการหาคำตอบของระบบสมการเชิงอนุพันธ์เชิงเส้น

การยกกำลังก็ใช้งานในความรู้สาขาอื่นอย่างแพร่หลายเช่นเศรษฐศาสตร์ ชีววิทยา เคมี ฟิสิกส์ และวิทยาการคอมพิวเตอร์ ในการใช้งานคำนวณอย่างเช่นดอกเบี้ยทบต้น การเพิ่มประชากร จลนพลศาสตร์เคมี พฤติกรรมของคลื่น และการเข้ารหัสลับแบบกุญแจอสมมาตร เป็นต้น

กราฟของสมการ y = ax ในฐาน a ต่าง ๆ : ฐาน 10 (สีเขียว), ฐาน e (สีแดง), ฐาน 2 (สีน้ำเงิน), และฐาน ½ (สีฟ้า) เส้นโค้งแต่ละเส้นผ่านจุด (0, 1) เนื่องจากจำนวนที่ไม่เป็นศูนย์ใด ๆ ยกกำลัง 0 จะได้ 1 และที่ x = 1 ค่าของ y จะเท่ากับฐาน เนื่องจากจำนวนใด ๆ ยกกำลัง 1 จะได้จำนวนเดิม

เลขชี้กำลังเป็นจำนวนเต็ม

การดำเนินการยกกำลังด้วยเลขชี้กำลังที่เป็นจำนวนเต็ม เป็นข้อกำหนดที่จำเป็นของพีชคณิตมูลฐานเท่านั้น

เลขชี้กำลังเป็นจำนวนเต็มบวก

นิพจน์ a2 = a·a เรียกว่า square หมายถึงรูปสี่เหลี่ยมจัตุรัส (ดูเพิ่มที่การยกกำลังสอง) เพราะรูปสี่เหลี่ยมจัตุรัสที่มีด้านยาวด้านละ a หน่วย มีพื้นที่เท่ากับ a2 ตารางหน่วย

นิพจน์ a3 = a·a·a เรียกว่า cube หมายถึงทรงลูกบาศก์ (ดูเพิ่มที่การยกกำลังสาม) เพราะทรงลูกบาศก์ที่มีด้านยาวด้านละ a หน่วย มีปริมาตรเท่ากับ a3 ลูกบาศก์หน่วย

เลขชี้กำลังเป็นตัวบ่งบอกว่าจะนำฐานมาคูณกันกี่ตัว (ไม่ใช่คูณกันกี่ครั้ง) ตัวอย่างเช่น 35 = 3·3·3·3·3 = 243 ดังนี้ฐาน 3 ปรากฏ 5 ครั้งในการคูณเพราะเลขชี้กำลังเป็น 5; ค่า 243 เป็น กำลัง ของ 3 คือผลลัพธ์ที่ได้จาก 3 ยกกำลัง 5

การยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มบวก อาจนิยามได้จากความสัมพันธ์เวียนเกิด an+1 = a·an โดยให้เงื่อนไขเริ่มต้นเป็น a1 = a

เลขชี้กำลังเป็น 0 หรือ 1

เนื่องจาก a1 หมายถึงผลคูณของ a เพียง 1 ตัว ซึ่งถูกนิยามให้มีค่าเท่ากับ a

จากความสัมพันธ์เวียนเกิดอีกรูปแบบหนึ่ง an − 1 = an/a เมื่อสมมติให้ n = 1 จะได้ a0 = 1

หรือกล่าวอีกทางหนึ่งว่า กำหนดให้ n, m, และ nm เป็นจำนวนเต็มบวก (โดยที่ a ไม่เท่ากับศูนย์) จะได้ความสัมพันธ์

 

ในกรณีที่ n และ m มีค่าเท่ากัน สมการดังกล่าวจะกลายเป็น

 

เนื่องจากตัวเศษและตัวส่วนมีค่าเท่ากัน ดังนั้นจึงสามารถนิยามค่าของ a0 = 1 นำไปสู่กฎสองประการ

  • จำนวนใด ๆ ยกกำลัง 1 จะได้ตัวมันเอง
  • จำนวนใด ๆ ที่ไม่เป็นศูนย์ ยกกำลัง 0 จะได้ 1 ซึ่งเป็นการตีความมาจากผลคูณว่าง สำหรับกรณี 00 ดูเพิ่มที่หัวข้อ 0 ยกกำลัง 0

ความหมายทางคณิตศาสตร์เชิงการจัด

สำหรับ n และ m ที่เป็นจำนวนเต็มไม่เป็นลบ (จำนวนเต็มบวกรวมทั้งศูนย์) เลขยกกำลัง nm จะหมายถึงภาวะเชิงการนับ (cardinality) ของเซตของ m สิ่งอันดับ (m-tuple) ที่ได้จากเซตที่มีสมาชิก n ตัว หรือพูดอีกนัยหนึ่งคือ เป็นจำนวนของคำที่มีตัวอักษร m ตัว จากชุดตัวอักษร n ตัว

05 = │ {} │ = 0 ไม่มีห้าสิ่งอันดับ จากเซตว่าง
14 = │ { (1, 1, 1, 1) } │ = 1 มีสี่สิ่งอันดับ 1 ชุด จากเซตที่มีสมาชิก 1 ตัว
23 = │ { (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2) } │ = 8   มีสามสิ่งอันดับ 8 ชุด จากเซตที่มีสมาชิก 2 ตัว
32 = │ { (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3) } │ = 9 มีสองสิ่งอันดับ (คู่อันดับ) 9 ชุด จากเซตที่มีสมาชิก 3 ตัว
41 = │ { (1), (2), (3), (4) } │ = 4 มีหนึ่งสิ่งอันดับ 4 ชุด จากเซตที่มีสมาชิก 4 ตัว
50 = │ { () } │ = 1 มีศูนย์สิ่งอันดับ 1 ชุด จากเซตที่มีสมาชิก 5 ตัว

ดูเพิ่มเติมที่หัวข้อการยกกำลังบนเซต

เลขชี้กำลังเป็นจำนวนเต็มลบ

จากนิยาม จำนวนใด ๆ ที่ไม่เป็นศูนย์ เมื่อยกกำลังด้วย −1 จะทำให้เกิดส่วนกลับหรือตัวผกผันการคูณ

 

จึงสามารถนิยามว่า

 

เมื่อ a เป็นจำนวนใด ๆ ที่ไม่เป็นศูนย์และ n เป็นจำนวนเต็มบวก แต่สำหรับจำนวน 0 ยกกำลังจำนวนลบ จะทำให้เกิดกรณีการหารด้วยศูนย์ จึงไม่มีการนิยาม

นิยามของ an สำหรับค่า a ใด ๆ ที่ไม่ใช่ศูนย์ ทำให้เอกลักษณ์ aman = am+n เป็นจริงบนทุกช่วงจำนวนเต็มของ m กับ n (ทั้งบวก ลบ และศูนย์) จากเดิมเป็นจริงเฉพาะเมื่อ m กับ n เป็นจำนวนเต็มไม่เป็นลบ โดยเฉพาะอย่างยิ่งการใช้เอกลักษณ์นี้โดยกำหนดให้ m = −n จะทำให้

 

เมื่อ a0 ได้นิยามเช่นนั้นแล้ว เป็นเหตุให้นำไปสู่การนิยาม an = 1/an ดังที่ได้กล่าวแล้ว

การยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็มลบ อาจสามารถเขียนให้อยู่ในรูปของการหารซ้ำ ๆ จาก 1 ด้วยฐานก็ได้ ตัวอย่างเช่น

 

เอกลักษณ์และสมบัติ

เอกลักษณ์สำคัญที่สุดของการยกกำลังที่สอดคล้องกับกรณีเลขชี้กำลังเป็นจำนวนเต็มคือ

 

เอกลักษณ์นี้จึงเป็นผลที่ตามมา

 

และ

 

เอกลักษณ์พื้นฐานอีกอันหนึ่งคือ

 

ในขณะที่การบวกและการคูณมีสมบัติการสลับที่ เช่น 2+3 = 5 = 3+2 และ 2·3 = 6 = 3·2 แต่การยกกำลังไม่มีสมบัติการสลับที่ เช่น 23 = 8 แต่ 32 = 9

และเช่นเดียวกัน ในขณะที่การบวกและการคูณมีสมบัติการเปลี่ยนหมู่ เช่น (2+3) +4 = 9 = 2+ (3+4) และ (2·3) ·4 = 24 = 2· (3·4) แต่การยกกำลังไม่มีสมบัติการเปลี่ยนหมู่ ตัวอย่างเช่น "23 ยกกำลัง 4" จะได้ผลลัพธ์เป็น 84 หรือเท่ากับ 4,096 แต่ "2 ยกกำลัง 34" จะได้ผลลัพธ์เป็น 281 หรือ 2,417,851,639,229,258,349,412,352 ถ้าหากเขียนเลขยกกำลังซ้อนกันโดยไม่ใส่วงเล็บ ลำดับของการคำนวณจะทำจากตัวบนสุดมาก่อน นั่นคือ

 

กำลังของ 10

ดูเพิ่มเติมที่: สัญกรณ์วิทยาศาสตร์

ในระบบเลขฐานสิบ กำลังจำนวนเต็มของ 10 สามารถเขียนแทนได้ด้วยเลข 1 ตามด้วยหรือนำโดยเลข 0 จำนวนหนึ่ง ซึ่งพิจารณาจากเครื่องหมายและขนาดของเลขชี้กำลัง ตัวอย่างเช่น 103 = 1,000 และ 10−4 = 0.0001 เป็นต้น

การยกกำลังด้วยฐาน 10 ถูกใช้ในสัญกรณ์วิทยาศาสตร์ เพื่อใช้อธิบายจำนวนขนาดใหญ่หรือเล็กมาก ตัวอย่างเช่น จำนวน 299,792,458 เมตรต่อวินาที (ความเร็วแสงในสุญญากาศ) สามารถเขียนได้เป็น 2.99792458×108 m/s หรือเท่ากับประมาณ 2.998×108 m/s

คำอุปสรรคในหน่วยเอสไอที่มีพื้นฐานบนกำลังของ 10 ก็ถูกใช้อธิบายปริมาณที่ใหญ่หรือเล็กมากได้เช่นกันเช่น คำอุปสรรค กิโล หมายถึง 103 = 1,000 ดังนั้น 1 กิโลเมตรจึงเท่ากับ 1,000 เมตร

กำลังของ 2

กำลังจำนวนเต็มบวกของ 2 เป็นสิ่งที่สำคัญในวิทยาการคอมพิวเตอร์ เพราะว่าตัวแปรฐานสองขนาด n บิต จะมีค่าที่เป็นไปได้ทั้งหมด 2n ค่า

กำลังของ 2 ก็เป็นสิ่งสำคัญในทฤษฎีเซต เนื่องจากเซตเซตหนึ่งที่มีสมาชิก n ตัว จะมีเซตกำลังที่มีสมาชิก 2n ตัว (เซตกำลังคือเซตของเซตย่อยทั้งหมดจากเซตต้นแบบ)

กำลังจำนวนเต็มลบของ 2 ก็ใช้กันทั่วไป เช่น 2−1 = 1/2 หมายถึงครึ่ง (half), 2−2 = 1/4 คือหนึ่งในสี่ (quarter) เป็นต้น

ในระบบเลขฐานสอง กำลังจำนวนเต็มของ 2 ก็สามารถเขียนแทนได้ด้วยเลข 1 แล้วตามด้วยหรือนำโดยเลข 0 ซึ่งพิจารณาจากเครื่องหมายและขนาดของเลขชี้กำลัง ตัวอย่าง 23 เขียนในเลขฐานสองว่า 10002 เป็นต้น

กำลังของ 1

กำลังจำนวนเต็มของ 1 ทุกจำนวนมีค่าเท่ากับ 1 นั่นคือ 1n = 1

กำลังของ 0

ถ้าเลขชี้กำลังเป็นจำนวนบวก เลขยกกำลังของ 0 จะได้ 0 นั่นคือ 0n = 0; n > 0

ถ้าเลขชี้กำลังเป็นจำนวนลบ เลขยกกำลังของ 0 จะไม่นิยาม เนื่องจากทำให้เกิดการหารด้วยศูนย์

ถ้าเลขชี้กำลังเป็นศูนย์ ผู้แต่งตำราบางท่านได้นิยามว่า 00 = 1 ในขณะที่บางท่านก็คงไว้ว่าไม่นิยาม ดูที่หัวข้อ 0 ยกกำลัง 0

กำลังของ −1

ถ้า n เป็นจำนวนคู่ จะได้ (−1) n = 1

ถ้า n เป็นจำนวนคี่ จะได้ (−1) n = −1

จากสมบัติดังกล่าว กำลังของ −1 จึงมีประโยชน์ในการแสดงลำดับที่มีการสลับเครื่องหมาย ส่วนกรณีที่คล้ายกันสำหรับจำนวนเชิงซ้อน i ดูที่หัวข้อกำลังของจำนวนเชิงซ้อน

เลขชี้กำลังขนาดใหญ่

ลิมิตของลำดับของกำลังของจำนวนที่มากกว่า 1 จะลู่ออก หมายความว่าจะมีค่าเพิ่มขึ้นเรื่อย ๆ โดยไม่จำกัด

an → ∞ เมื่อ n → ∞ ถ้า a > 1

อาจเรียกได้ว่า a ยกกำลัง n จะมีค่าเข้าใกล้อนันต์ถ้า n มีค่าเข้าใกล้อนันต์ เมื่อ a มีค่ามากกว่า 1

สำหรับกำลังของจำนวนที่มีค่าสัมบูรณ์น้อยกว่า 1 ลิมิตของลำดับจะลู่เข้าค่า 0

an → 0 เมื่อ n → ∞ ถ้า |a| < 1

และกำลังของ 1 จะได้ค่า 1 เสมอ

an = 1 สำหรับทุกค่าของ n ถ้า a = 1

แต่หากฐาน a มีค่าเข้าใกล้ 1 พร้อมกับเลขชี้กำลังมีค่าเข้าใกล้อนันต์ ลิมิตของมันไม่สำคัญว่าจะต้องเท่ากับ 1 ตัวอย่างกรณีหนึ่งที่สำคัญคือ

(1 + n−1) ne เมื่อ n → ∞

ดูเพิ่มในกำลังของ e

กำลังจำนวนจริงของจำนวนจริงบวก

การยกกำลังจำนวนจริงบวก ด้วยเลขชี้กำลังที่ไม่เป็นจำนวนเต็ม สามารถคำนวณได้สองวิธีนั่นคือ

  • เลขชี้กำลังเป็นจำนวนตรรกยะ สามารถนิยามให้เป็นรากที่ n และเลขชี้กำลังที่ไม่เป็นศูนย์สามารถนิยามได้จากความต่อเนื่อง
  • เลขชี้กำลังเป็นจำนวนจริง สามารถนิยามให้เป็นลอการิทึมธรรมชาติโดยใช้ฟังก์ชันเลขชี้กำลัง

เอกลักษณ์และสมบัติที่แสดงไว้ด้านบนซึ่งนิยามไว้สำหรับเลขชี้กำลังจำนวนเต็ม ก็ยังคงเป็นจริงอยู่สำหรับเลขชี้กำลังจำนวนจริงบวกที่ไม่ใช่จำนวนเต็ม อย่างไรก็ตามเอกลักษณ์นี้

 

ไม่สามารถขยายแนวคิดได้อย่างคงเส้นคงวาถ้า a เป็นจำนวนจริงลบ ดูเพิ่มที่หัวข้อรากที่ n ที่เป็นลบ ความผิดพลาดของเอกลักษณ์นี้เป็นมูลฐานของปัญหาที่เกี่ยวกับกำลังของจำนวนเชิงซ้อน ซึ่งได้อธิบายไว้แล้วที่หัวข้อความผิดพลาดของเอกลักษณ์กำลังและลอการิทึม

รากที่ n มุขสำคัญ

 
จากบนลงล่าง: x1/8, x1/4, x1/2, x1, x2, x4, x8
ดูบทความหลักที่: รากที่ n

รากที่ n ของจำนวน a คือจำนวน x ที่ซึ่ง xn = a

ถ้า a เป็นจำนวนจริงบวกและ n เป็นจำนวนเต็มบวก จะมีคำตอบสำหรับ xn = a ที่เป็นจำนวนจริงบวกหนึ่งจำนวนอย่างแน่นอน คำตอบดังกล่าวเรียกว่า รากที่ n มุขสำคัญของ a (principal n-th root) เขียนแทนได้ด้วยสัญลักษณ์   เมื่อ   คือกรณฑ์ หรือเขียนอีกรูปแบบหนึ่งเป็น a1/n เช่น 41/2 = 2, 81/3 = 2

เมื่อพูดถึงรากที่ n ของจำนวนจริงบวก a มักจะหมายถึงรากที่ n มุขสำคัญของ a ดังที่ได้กล่าวแล้ว

เลขชี้กำลังเป็นจำนวนตรรกยะ

กำลังของจำนวนจริงบวก a ซึ่งมีเลขชี้กำลังเป็นจำนวนตรรกยะ m/n ในพจน์น้อยที่สุด สอดคล้องกับ

 

เมื่อ m เป็นจำนวนเต็มและ n เป็นจำนวนเต็มบวก

กำลังของ e

ดูบทความหลักที่: ฟังก์ชันเลขชี้กำลัง

e หรือค่าคงตัวของออยเลอร์ เป็นค่าคงตัวทางคณิตศาสตร์ที่สำคัญค่าหนึ่ง มีค่าประมาณ 2.718 และเป็นฐานของลอการิทึมธรรมชาติ ใช้เป็นแนวทางนำไปสู่การนิยามการยกกำลังที่มีเลขชี้กำลังไม่เป็นจำนวนเต็ม ค่าคงตัวนี้นิยามโดยลิมิตต่อไปนี้ ซึ่งเลขชี้กำลังมีค่าเข้าใกล้อนันต์ในขณะที่ฐานมีค่าเข้าใกล้ 1

 

ฟังก์ชันเลขชี้กำลังซึ่งนิยามโดยลิมิตต่อไปนี้

 

มี x เป็นเลขชี้กำลังเพิ่มเข้ามา และสอดคล้องกับเอกลักษณ์การยกกำลัง

 

ฟังก์ชันเลขชี้กำลังนิยามขึ้นสำหรับ x ที่เป็นจำนวนเต็ม จำนวนตรรกยะ จำนวนจริง และจำนวนเชิงซ้อนทั้งหมด นอกจากนี้ก็สามารถขยายการยกกำลังไปบนสิ่งอื่นที่ไม่ใช่จำนวนได้เช่นเมทริกซ์จัตุรัส อย่างไรก็ตามเอกลักษณ์การยกกำลังที่ยกมาจะเป็นจริงก็ต่อเมื่อ x และ y สามารถสลับที่กันได้เท่านั้น

การพิสูจน์อย่างสั้นว่า e ยกกำลังจำนวนเต็มบวก k เหมือนกับฟังก์ชันเลขชี้กำลัง ek แสดงได้ดังนี้

 

แสดงให้เห็นว่า ex+y สอดคล้องกับเอกลักษณ์การยกกำลังเมื่อ x และ y เป็นจำนวนเต็มบวก ผลจากการพิสูจน์ยังคงสอดคล้องสำหรับจำนวนทุกจำนวนด้วย ไม่เพียงแค่จำนวนเต็มบวก

เลขชี้กำลังเป็นจำนวนจริง

เนื่องจากจำนวนจริงสามารถประมาณค่าได้ด้วยจำนวนตรรกยะ การยกกำลังด้วยจำนวนจริง x ทุกจำนวนจึงสามารถนิยามได้ด้วยความต่อเนื่องด้วยกฎดังนี้

 

ลิมิตดังกล่าวซึ่ง r ที่มีค่าเข้าใกล้ x ถูกนำมาแทนที่เฉพาะจำนวนตรรกยะ r

ยกตัวอย่าง ถ้า

 

ดังนั้น

 

การยกกำลังด้วยจำนวนจริงโดยปกติก็สามารถทำให้สำเร็จได้ด้วยลอการิทึม แทนที่จะใช้ลิมิตของจำนวนตรรกยะ

ลอการิทึมธรรมชาติ ln (x) เป็นฟังก์ชันผกผันของฟังก์ชันเลขชี้กำลัง ex ซึ่งนิยามไว้สำหรับ b > 0 และสอดคล้องกับเงื่อนไข

 

ถ้า bx ถูกนิยามขึ้นโดยยังคงรักษากฎต่าง ๆ ของลอการิทึมและการยกกำลัง จะได้ว่า

 

สำหรับจำนวนจริง x แต่ละจำนวน

สิ่งนี้สามารถใช้เป็นนิยามทางเลือกของการยกกำลังด้วยจำนวนจริง bx และสอดคล้องกับวิธีการใช้เลขชี้กำลังเป็นจำนวนตรรกยะกับความต่อเนื่อง นิยามดังกล่าวเป็นวิธีการปกติสามัญในบริบทของจำนวนเชิงซ้อนอีกด้วย

รากที่ n ที่เป็นลบ

กำลังของจำนวนจริงบวกจะมีค่าเป็นจำนวนจริงบวกเสมอ อย่างไรก็ตาม คำตอบของสมการ x2 = 4 อาจเป็น 2 หรือ −2 ก็ได้ ค่ามุขสำคัญของ 41/2 คือ 2 แต่ −2 ก็เป็นรากที่สองที่ถูกต้องอีกค่าหนึ่งด้วย หากนิยามของการยกกำลังของจำนวนจริงขยายแนวคิดให้มีผลลัพธ์เป็นจำนวนลบได้ ผลของการยกกำลังอาจลักลั่น

ถ้า n เป็นจำนวนคู่ จากสมการ xn = a ถ้า a เป็นบวกจะมีสองคำตอบ ได้แก่รากที่ n ที่เป็นบวกและลบ แต่ถ้า a เป็นลบจะไม่มีคำตอบเป็นจำนวนจริง

ถ้า n เป็นจำนวนคี่ จากสมการ xn = a จะมีคำตอบที่เป็นจำนวนจริงหนึ่งจำนวน ถ้า a เป็นบวกก็จะได้คำตอบนั้นเป็นบวก และถ้า a เป็นลบก็จะได้คำตอบนั้นเป็นลบ

สำหรับเลขชี้กำลังที่เป็นจำนวนตรรกยะ m/n ในพจน์น้อยที่สุด ถ้า m เป็นจำนวนคู่ ผลลัพธ์จะเป็นบวก; ในกรณีที่ a เป็นลบ ถ้า m กับ n เป็นจำนวนคี่ ผลลัพธ์จะเป็นลบ; ในกรณีที่ a เป็นบวกและ n เป็นจำนวนคู่ ผลลัพธ์อาจเป็นบวกหรือลบอย่างใดอย่างหนึ่ง ตัวอย่างเช่น (−27) 1/3 = −3, (−27) 2/3 = 9, 43/2 มีสองคำตอบคือ 8 กับ −8 และเนื่องจากไม่มีจำนวนจริง x ที่ทำให้ x2 = −1 ดังนั้นนิยามของ am/n ในกรณีที่ a เป็นลบและ n เป็นจำนวนคู่ จึงจำเป็นต้องใช้หน่วยจินตภาพ i เข้ามาเกี่ยวข้อง

ไม่ว่าวิธีการใช้ลอการิทึมหรือเลขชี้กำลังเป็นจำนวนตรรกยะ ก็ไม่สามารถนิยาม ar ให้เป็นจำนวนจริงได้ สำหรับ a ที่เป็นจำนวนจริงลบและทุกช่วงค่าของจำนวนจริง r และทำนองเดียวกัน er ให้ผลลัพธ์เป็นบวกสำหรับทุกช่วงค่าของจำนวนจริง r ดังนั้น ln (a) ซึ่งเป็นฟังก์ชันผกผันจึงไม่อาจนิยามให้เป็นจำนวนจริงได้สำหรับ a ≤ 0 (ในทางตรงข้าม กำลังเชิงซ้อนของจำนวนลบ a สามารถนิยามได้ด้วยลอการิทึมเชิงซ้อนของ a)

วิธีการใช้เลขชี้กำลังเป็นจำนวนตรรกยะไม่สามารถใช้ได้กับค่า a ที่เป็นลบ เพราะวิธีการนี้ขึ้นอยู่กับความต่อเนื่อง หมายความว่า ฟังก์ชัน f (r) = ar เป็นการขยายจำนวนตรรกยะไปเป็นจำนวนจริงอย่างต่อเนื่องเพียงหนึ่งเดียวเมื่อ a > 0 แต่ในกรณี a < 0 ฟังก์ชัน f ไม่ต่อเนื่องบนเซตของจำนวนจริง r ที่กำหนดไว้แต่ละค่า

ตัวอย่าง สมมติให้ a = −1 รากที่ n ของ −1 เท่ากับ −1 สำหรับจำนวนคี่บวก n ทุกจำนวน; แต่ถ้า n เป็นจำนวนคู่บวก (−1) (m/n) = −1 เมื่อ m เป็นจำนวนคี่, (−1) (m/n) = 1 เมื่อ m เป็นจำนวนคู่ ดังนั้นเซตของจำนวนตรรกยะ q ที่ทำให้ (−1) q = 1 เป็นเซตหนาแน่น (dense set) ในจำนวนตรรกยะ เช่นเดียวกับเซตของ q ที่ทำให้ (−1) q = −1 สิ่งนี้หมายความว่าฟังก์ชัน (−1) q ไม่ต่อเนื่องที่จำนวนตรรกยะ q ใด ๆ ที่กำหนดไว้แต่ละค่า

เมื่อใช้เอกลักษณ์การยกกำลังกับรากที่ n ที่เป็นลบ จำเป็นต้องระมัดระวังเป็นพิเศษ ตัวอย่างเช่น −27 =  (−27) ( (2/3) × (3/2) )  =  ( (−27) 2/3) 3/2 = 93/2 = 27 ซึ่งผิดอย่างชัดเจน ปัญหาอยู่ที่การใช้รากที่สองที่เป็นบวก แทนที่จะใช้รากที่สองที่เป็นลบในขั้นตอนสุดท้าย แต่โดยทั่วไปปัญหาที่คล้ายกันนี้มักเกิดขึ้นกับจำนวนเชิงซ้อน ดังที่ได้อธิบายไว้ในหัวข้อความผิดพลาดของเอกลักษณ์กำลังและลอการิทึม

กำลังจำนวนเชิงซ้อนของจำนวนจริงบวก

กำลังจำนวนจินตภาพของ e

 
ฟังก์ชันเลขชี้กำลัง ez สามารถนิยามโดยลิมิตของ (1 + z/N) N เมื่อ N มีค่าเข้าใกล้อนันต์ และเมื่อเป็นเช่นนั้น e ก็จะเป็นลิมิตของ (1 + /N) N ในภาพเคลื่อนไหวนี้ N มีค่าเพิ่มขึ้นจาก 1 ถึง 100 การคำนวณ (1 + /N) N แสดงเป็นผลร่วมที่เกิดจากการคูณซ้ำ ๆ N ตัวในระนาบเชิงซ้อน ซึ่งจุดสุดท้ายเป็นค่าที่แท้จริงของ (1 + /N) N แสดงให้เห็นว่าเมื่อ N มากขึ้น (1 + /N) N จะมีค่าเข้าใกล้ −1 ดังนั้น e = −1 ซึ่งเป็นที่รู้จักในชื่อเอกลักษณ์ของออยเลอร์
ดูบทความหลักที่: ฟังก์ชันเลขชี้กำลัง

การทำความเข้าใจ eix สำหรับจำนวนจริง x ต้องทราบถึงการแปลความหมายเชิงเรขาคณิตของการดำเนินการบนจำนวนเชิงซ้อน และนิยามกำลังของ e ดังที่กล่าวไว้แล้วข้างต้น พิจารณารูปสามเหลี่ยมมุมฉาก (0, 1, 1 + ix/n) สำหรับจำนวน n ที่มีขนาดใหญ่มาก ๆ รูปสามเหลี่ยมนั้นจะมีลักษณะเข้าใกล้เซกเตอร์ของรูปวงกลมมากยิ่งขึ้น โดยมีมุมที่จุดศูนย์กลางเท่ากับ x/n เรเดียน และรูปสามเหลี่ยมอื่น ๆ (0, (1 + ix/n) k, (1 + ix/n) k+1) ก็เป็นรูปสามเหลี่ยมคล้ายร่วมกันสำหรับ k ทุกค่า เพราะฉะนั้น สำหรับจำนวน n ขนาดใหญ่ จุดที่เป็นขอบเขตของ (1 + ix/n) n ก็คือจุดที่อยู่บนรูปวงกลมหนึ่งหน่วย ซึ่งมุมที่วัดจากแกนจำนวนจริงบวกเท่ากับ x เรเดียน พิกัดเชิงขั้วของจุดนี้คือ (r, θ) = (1, x) และพิกัดคาร์ทีเซียนคือ (cos x, sin x) ดังนั้นในท้ายที่สุด eix = cos x + i sin x เรียกว่าสูตรของออยเลอร์ ซึ่งเชื่อมโยงพีชคณิตกับตรีโกณมิติด้วยความหมายของจำนวนเชิงซ้อน

คำตอบของสมการ ez = 1 คือพหุคูณจำนวนเต็มของ 2πi

 

ในกรณีทั่วไป ถ้ากำหนดให้ eb = a ดังนั้นคำตอบของสมการ ez = a หาได้โดยการบวก b เข้ากับพหุคูณจำนวนเต็มของ 2πi

 

ดังนั้นฟังก์ชันเลขชี้กำลังเชิงซ้อนเป็นฟังก์ชันเป็นคาบ (periodic function) ซึ่งมีคาบเท่ากับ 2πi

นอกจากนี้ก็ยังมีสูตรอื่น ๆ อีกเช่น e = −1; ex + iy = ex (cos y + i sin y)

ฟังก์ชันตรีโกณมิติ

ดูบทความหลักที่: สูตรของออยเลอร์

จากการแปลงสูตรของออยเลอร์ ฟังก์ชันตรีโกณมิติ โคไซน์และไซน์ถูกแปลงเป็น

 

โคไซน์และไซน์ถูกนิยามขึ้นโดยทางเรขาคณิตก่อนมีการประดิษฐ์จำนวนเชิงซ้อนในประวัติศาสตร์ สูตรทั้งสองด้านบนเป็นการลดรูปสูตรที่ซับซ้อนของฟังก์ชันตรีโกณมิติของผลบวกเป็นสูตรการยกกำลังอย่างง่ายว่า

 

การใช้การยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเชิงซ้อน อาจช่วยลดรูปปัญหาในตรีโกณมิติไปเป็นพีชคณิตได้

กำลังจำนวนเชิงซ้อนของ e

การยกกำลัง z = ex+i·y สามารถคำนวณได้จาก ex · ei·y; ตัวประกอบส่วนจริง ex คือค่าสัมบูรณ์ของ z และตัวประกอบส่วนจินตภาพ ei·y ระบุทิศทางของ z

กำลังจำนวนเชิงซ้อนของจำนวนจริงบวก

กำหนดให้ a เป็นจำนวนจริงบวก และ z เป็นจำนวนเชิงซ้อนใด ๆ การยกกำลัง az นิยามโดย ez·ln (a) เมื่อ x = ln (a) เป็นคำตอบจำนวนจริงเพียงหนึ่งเดียวของสมการ ex = a ดังนั้นวิธีการเดียวกันที่ใช้กับเลขชี้กำลังจำนวนจริงก็ยังคงใช้ได้กับเลขชี้กำลังจำนวนเชิงซ้อน ตัวอย่างเช่น

2i = e i·ln (2) = cos (ln (2) ) + i·sin (ln (2) ) ≈ 0.76924 + 0.63896i
ei ≈ 0.54030 + 0.84147i
10i ≈ −0.66820 + 0.74398i
(e) i ≈ 535.49i ≈ 1

กำลังของจำนวนเชิงซ้อน

กำลังจำนวนเต็มของจำนวนเชิงซ้อนที่ไม่เป็นศูนย์นิยามโดยการคูณหรือการหารซ้ำ ๆ เช่นเดียวกับที่ได้กล่าวแล้ว ถ้า i คือหน่วยจินตภาพและ n คือจำนวนเต็มแล้ว in จะมีค่าเท่ากับ 1, i, −1 หรือ −i ขึ้นอยู่กับค่า n ว่าสมภาคกับ 0, 1, 2 หรือ 3 มอดุโล 4 ตามลำดับ (หรืออีกนัยหนึ่งคือ n หารด้วย 4 แล้วเหลือเศษเท่าใด) ด้วยสาเหตุนี้ กำลังของ i จึงมีประโยชน์ในการเขียนแทนลำดับที่มีคาบแบ่งเป็น 4 ช่วง

กำลังจำนวนเชิงซ้อนของจำนวนจริงบวกได้นิยามผ่านทาง ex ตามที่อธิบายไว้ในหัวข้อกำลังจำนวนเชิงซ้อนของจำนวนจริงบวก ซึ่งเป็นฟังก์ชันต่อเนื่อง

การขยายแนวคิดของฟังก์ชันเหล่านี้ไปเป็นกรณีทั่วไปคือ กำลังที่ไม่เป็นจำนวนเต็มของจำนวนเชิงซ้อนที่ไม่ใช่จำนวนเต็มบวก ทำให้เกิดความยุ่งยาก นั่นคือต้องนิยามฟังก์ชันไม่ต่อเนื่องหรือฟังก์ชันหลายค่าอย่างใดอย่างหนึ่ง แต่ไม่ว่าทางเลือกใดก็ไม่สามารถนิยามให้สอดคล้องเพียงพอทั้งหมดได้

กำลังจำนวนตรรกยะของจำนวนเชิงซ้อนต้องเป็นคำตอบของสมการเชิงพีชคณิตสมการหนึ่ง ดังนั้นมันจึงมีคำตอบที่เป็นไปได้จำนวนจำกัดหนึ่งเสมอ ตัวอย่างเช่น w = z1/2 ต้องเป็นคำตอบของสมการ w2 = z แต่เมื่อ w เป็นคำตอบแล้ว −w ก็เป็นคำตอบด้วยเช่นกันเพราะว่า (−1) 2 = 1 คำตอบเพียงหนึ่งเดียวที่ถูกเลือกโดยค่อนข้างปราศจากเหตุผลเรียกว่าค่ามุขสำคัญ (principal value) สามารถเลือกโดยใช้กฎทั่วไปซึ่งใช้กับกำลังที่ไม่ใช่จำนวนตรรกยะด้วย

กำลังและลอการิทึมเชิงซ้อนโดยธรรมชาติถือว่าเป็นฟังก์ชันค่าเดียวบนผิวรีมันน์ (Riemann surface) รูปแบบค่าเดียวถูกนิยามขึ้นโดยการเลือกผิวขึ้นมาอันหนึ่ง ค่าของมันไม่มีความต่อเนื่องตามแนวส่วนตัดกิ่ง (branch cut) การเลือกหนึ่งคำตอบจากหลายคำตอบเป็นค่ามุขสำคัญก็ยังคงได้ฟังก์ชันที่ไม่มีความต่อเนื่อง และกฎต่าง ๆ ที่ใช้จัดการกับการยกกำลังตามปกติอาจนำไปสู่ความผิดพลาดได้

กำลังจำนวนอตรรกยะของจำนวนเชิงซ้อนมีคำตอบที่เป็นไปได้ไม่จำกัด เพราะธรรมชาติของลอการิทึมเชิงซ้อนสามารถมีคำตอบได้หลายค่า ค่ามุขสำคัญคือค่าค่าหนึ่งที่ถูกเลือกด้วยกฎอย่างหนึ่งท่ามกลางคุณสมบัติอื่น ๆ ที่ทำให้แน่ใจว่า กำลังของจำนวนเชิงซ้อนที่มีส่วนจริงเป็นบวกและส่วนจินตภาพเป็นศูนย์ จะมีค่าเหมือนกับกำลังของจำนวนจริงที่เกี่ยวข้อง

การยกกำลังจำนวนจริงด้วยจำนวนเชิงซ้อนเป็นการดำเนินการที่แตกต่างจากการยกกำลังจำนวนเชิงซ้อนที่เกี่ยวข้อง อย่างไรก็ตามในกรณีของจำนวนจริงบวก ค่ามุขสำคัญนั้นเหมือนกัน

กำลังของจำนวนจริงลบนั้นไม่ได้ถูกนิยามเสมอไป และไม่ต่อเนื่องแม้ว่าจะได้นิยามแล้ว ดังนั้นเมื่อพบกับจำนวนเชิงซ้อน ควรใช้การดำเนินการสำหรับจำนวนเชิงซ้อนแทน

กำลังจำนวนเชิงซ้อนของจำนวนเชิงซ้อน

สำหรับจำนวนเชิงซ้อน a และ b ซึ่ง a ≠ 0 สัญกรณ์ ab เกิดความกำกวมในคำตอบเหมือนกับ log a

เพื่อหาค่าของ ab ขั้นตอนแรกจะต้องเลือกลอการิทึมของ a ขึ้นมาค่าหนึ่ง ทางเลือกนั้นอาจเป็น Log a (คือค่ามุขสำคัญของ log a โดยปริยายหากมิได้กำหนดเงื่อนไขอื่นเพิ่ม) หรืออาจเป็นค่าหนึ่งจากกิ่งอื่นของ log z ที่กำหนดตายตัว ดังนั้นจึงสามารถนิยามโดยใช้ฟังก์ชันลอการิทึมเชิงซ้อนดังนี้

 

เพราะนิยามนี้สอดคล้องกับนิยามที่ให้ไว้ก่อนหน้านี้ ในกรณีที่ a เป็นจำนวนจริงบวกและค่ามุขสำคัญของ log a (ซึ่งเป็นจำนวนจริง) ได้ถูกเลือก

ถ้า b เป็นจำนวนเต็ม ดังนั้นค่าของ ab จะไม่ขึ้นอยู่กับตัวเลือกของ log a เพราะสอดคล้องกับนิยามการยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็ม

ถ้า b เป็นจำนวนตรรกยะ m/n ในพจน์น้อยที่สุดโดยที่ n > 0 ดังนั้นจะมีตัวเลือกของ log a เป็นจำนวนไม่จำกัดให้ค่าที่แตกต่างกัน n จำนวนสำหรับ ab ซึ่งค่าเหล่านี้คือจำนวนเชิงซ้อน z ที่เป็นคำตอบของสมการ zn = am

ถ้า b เป็นจำนวนอตรรกยะ ดังนั้นจะมีตัวเลือกของ log a เป็นจำนวนไม่จำกัด นำไปสู่ค่าของ ab ที่แตกต่างกันเป็นจำนวนไม่จำกัดเช่นกัน

การคำนวณกำลังจำนวนเชิงซ้อนสามารถทำให้ง่ายขึ้นโดยการแปลงฐาน a เป็นรูปแบบเชิงขั้ว ดังที่อธิบายไว้ด้านล่าง การสร้างที่คล้ายก็สามารถใช้ควอเทอร์เนียน (quaternion) ได้ด้วย

รากเชิงซ้อนของ 1 (รากปฐมฐาน)

 
รากที่สามของ 1 ทั้งสามราก
ดูบทความหลักที่: รากของ 1

จำนวนเชิงซ้อน a ที่ทำให้ an = 1 สำหรับจำนวนเต็มบวก n เรียกว่า รากที่ n ของ 1 (nth root of unity) หรือเรียกสั้น ๆ ว่า รากของ 1 (root of unity) รากเหล่านี้มี n คำตอบและวางตัวคล้ายจุดยอดของรูป n เหลี่ยมปรกติ บนรูปวงกลมหนึ่งหน่วยบนระนาบเชิงซ้อน ซึ่งมีจุดยอดจุดหนึ่งอยู่ที่จำนวนจริง 1

ถ้า zn = 1 แต่ zk ≠ 1 สำหรับจำนวนธรรมชาติ k ตามเงื่อนไข 0 < k < n แล้ว z จะเรียกว่า รากปฐมฐานที่ n (primitive nth root of unity) ตัวอย่างเช่น −1 เป็นรากปฐมฐานที่สองเพียงตัวเดียว, รากปฐมฐานที่สี่มีสองตัวได้แก่ i และ −i (ไม่นับรากปฐมฐานที่สอง) เป็นต้น

จำนวน e2πi (1/n) คือรากปฐมฐานที่ n ที่มีอาร์กิวเมนต์เป็นบวกน้อยที่สุด (บางครั้งอาจเรียกว่า รากปฐมฐานที่ n "มุขสำคัญ" ถึงแม้ว่าการใช้คำนี้จะไม่แพร่หลายและอาจทำให้สับสนกับ ค่ามุขสำคัญของรากที่ n ของ 1 ซึ่งหมายถึงค่า 1 )

ส่วนรากของ 1 จำนวนอื่น ๆ คำนวณได้จาก

 

สำหรับ 2 ≤ kn

รากของจำนวนเชิงซ้อนโดยทั่วไป

แม้ว่าลอการิทึมเชิงซ้อนมีค่าที่เป็นไปได้มากมายไม่จำกัด แต่ก็มีค่าเป็นจำนวนจำกัดเท่านั้นที่เป็นคำตอบของ az โดยเฉพาะในกรณีที่ z = 1/n และ n เป็นจำนวนเต็มบวก ค่าเหล่านี้คือรากที่ n ของ a ซึ่งเป็นคำตอบของสมการ xn = a

ในทางคณิตศาสตร์ เราอาจทำให้การคำนวณสะดวกขึ้นโดยนิยาม a1/n ให้เป็นค่ามุขสำคัญของราก ถ้า a เป็นจำนวนจริงบวก จะสามารถเลือกคำตอบเป็นจำนวนจริงบวกเป็นค่ามุขสำคัญได้อย่างง่ายดาย สำหรับจำนวนเชิงซ้อนโดยทั่วไป รากที่ n ที่มีอาร์กิวเมนต์น้อยที่สุดมักจะถูกเลือกเป็นค่ามุขสำคัญของราก เช่นเดียวกับค่ามุขสำคัญของรากของ 1

เซตของรากที่ n ของจำนวนเชิงซ้อน a หาได้จากการคูณค่ามุขสำคัญของ a1/n ด้วยรากที่ n ของ 1 แต่ละจำนวน ตัวอย่างเช่น รากที่สี่ของ 16 ได้แก่ 2, −2, 2i และ −2i เพราะว่าค่ามุขสำคัญของรากที่สี่ของ 16 คือ 2 และรากที่สี่ของ 1 ได้แก่ 1, −1, i และ −i

การคำนวณกำลังจำนวนเชิงซ้อน

การคำนวณกำลังจำนวนเชิงซ้อนสามารถทำได้ง่ายขึ้นโดยเขียนเป็นการยกกำลังในรูปแบบเชิงขั้ว จำนวนเชิงซ้อน z ทุกจำนวนสามารถเขียนให้อยู่ในรูปแบบเชิงขั้วดังนี้

 

เมื่อ r คือจำนวนจริงไม่เป็นลบและ θ คืออาร์กิวเมนต์ของ z (ซึ่งเป็นจำนวนจริง) รูปแบบเชิงขั้วมีการแปลความหมายเชิงเรขาคณิตว่า ถ้าจำนวนเชิงซ้อน u + iv แทนได้ด้วยจุด (u, v) บนระนาบเชิงซ้อนโดยระบบพิกัดคาร์ทีเซียน ดังนั้น (r, θ) ก็คือจุดเดียวกันในระบบพิกัดเชิงขั้ว นั่นหมายความว่า r คือ "รัศมี" ที่มีค่าตาม r2 = u2 + v2 และ θ คือ "มุม" ที่มีค่าตาม θ = atan2 (v, u) (ฟังก์ชัน atan2 มาจากฟังก์ชัน arctan ที่มีเงื่อนไขเพิ่มเติม) มุมเชิงขั้ว θ มีความกำกวมเนื่องจาก θ สามารถบวกด้วยพหุคูณใด ๆ ของ 2π แล้วไม่ทำให้จุดเปลี่ยนตำแหน่งไปจากเดิม ตัวเลือกแต่ละค่าของ θ โดยทั่วไปจะให้ผลการยกกำลังที่แตกต่างกัน ส่วนตัดกิ่งส่วนหนึ่งสามารถนำมาใช้เพื่อเลือกค่าที่เจาะจง ค่ามุขสำคัญ (ส่วนตัดกิ่งที่สามัญที่สุด) สอดคล้องกับ θ ที่ถูกเลือกในช่วงค่า (−π, π] สำหรับจำนวนเชิงซ้อนที่มีส่วนจริงเป็นบวกและส่วนจินตภาพเป็นศูนย์ซึ่งใช้ค่ามุขสำคัญเช่นนั้น จะให้ผลลัพธ์เดียวกับการใช้จำนวนจริงที่เกี่ยวข้อง

เพื่อที่จะคำนวณกำลังเชิงซ้อน ab ขั้นแรกเขียน a ในรูปแบบเชิงขั้ว

 

ดังนั้น

 

และจะได้

 

ถ้า b ถูกแบ่งออกเป็น c + di ดังนั้นสูตรสำหรับ ab จึงเขียนให้ชัดเจนยิ่งขึ้นได้เป็น

 

สูตรสุดท้ายนี้ช่วยคำนวณการยกกำลังจำนวนเชิงซ้อนได้โดยง่าย จากการแบ่งฐานกับเลขชี้กำลังออกเป็นรูปแบบเชิงขั้วกับรูปแบบคาร์ทีเซียนตามลำดับ สูตรดังกล่าวแสดงผลลัพธ์ทั้งรูปแบบเชิงขั้วและรูปแบบคาร์ทีเซียน (ผ่านทางเอกลักษณ์ของออยเลอร์)

ตัวอย่างต่อไปนี้จะใช้ค่ามุขสำคัญคือส่วนตัดกิ่งที่ทำให้ θ อยู่ในช่วงค่า (−π, π] กำหนดโจทย์ i i ขั้นแรกเขียน i ในรูปแบบเชิงขั้วและรูปแบบคาร์ทีเซียนดังนี้

 
 

จากการแปลงด้านบน จะได้ว่า r = 1, θ = π/2, c = 0 และ d = 1 ดังนั้น

 

เช่นเดียวกันสำหรับโจทย์ (−2) 3 + 4i หารูปแบบเชิงขั้วของ −2 ได้เป็น

 

แล้วใช้สูตรด้านบนคำนวณจนได้คำตอบ

 

ค่าของการยกกำลังจำนวนเชิงซ้อนขึ้นอยู่กับกิ่งที่เลือก ตัวอย่างเช่น ถ้าเลือกรูปแบบเชิงขั้วของ i = 1ei  (5π/2) เพื่อคำนวณ i i คำตอบจะกลายเป็น e−5π/2 แต่ค่ามุขสำคัญของ i i คือ e−π/2 ดังตัวอย่างที่แสดงไว้แล้ว เซตของค่าทั้งหมดที่เป็นไปได้สำหรับ i i สามารถหาได้จากเงื่อนไข

 
 

เมื่อ k เป็นจำนวนเต็มจำนวนหนึ่ง ดังนั้นคำตอบที่เป็นไปได้ของ i i จึงมีจำนวนไม่จำกัดสำหรับค่า k แต่ละค่า คำตอบทั้งหมดมีส่วนจินตภาพเป็นศูนย์ ดังนั้นเราจึงอาจกล่าวได้ว่า i i มีค่าเป็นจำนวนจริงและมีเป็นอนันต์

ความผิดพลาดของเอกลักษณ์กำลังและลอการิทึม

เอกลักษณ์การยกกำลังและลอการิทึมบางอย่างที่ใช้กับจำนวนจริงบวก ใช้งานไม่ได้กับจำนวนเชิงซ้อน ไม่ว่าการยกกำลังเชิงซ้อนและลอการิทึมเชิงซ้อนถูกนิยามขึ้นอย่างไร ยกตัวอย่าง

  • เอกลักษณ์ log (ab) = b · log a เป็นจริงเมื่อ a เป็นจำนวนจริงบวกและ b เป็นจำนวนจริง แต่สำหรับกิ่งมุขสำคัญ (principal branch) ของลอการิทึมเชิงซ้อนจะได้ว่า
  • ::  
  • : ไม่ว่ากิ่งใดของลอการิทึมจะถูกเลือก ความผิดพลาดดังกล่าวก็ยังคงมีอยู่ แนวทางที่ดีที่สุด (เมื่อต้องการใช้ผลลัพธ์เท่านั้น) คือการกำหนดให้
  • ::  
  • : เอกลักษณ์นี้ก็ไม่เป็นจริงหากพิจารณาว่าลอการิทึมเป็นฟังก์ชันหลายค่า ค่าที่เป็นไปได้ของ log (ab) จะมีค่า b · log a เหล่านั้นเป็นเพียงเซตย่อยเซตหนึ่ง ค่าที่เป็นไปได้ทั้งสองข้างของเอกลักษณ์ซึ่งแสดงด้วย Log (a) แทนค่ามุขสำคัญของ log (a) และ m กับ n เป็นจำนวนเต็มใด ๆ จะได้ว่า
  • ::  
  • ::  
  • เอกลักษณ์ (ab) c = acbc และ (a/b) c = ac/bc ใช้ได้เฉพาะเมื่อ a กับ b เป็นจำนวนจริงบวกและ c เป็นจำนวนจริง แต่การคำนวณโดยใช้กิ่งมุขสำคัญแสดงให้เห็นว่า
  • ::  
  • : และ
  • ::  
  • : ในทางตรงข้าม เมื่อ c เป็นจำนวนเต็ม เอกลักษณ์เหล่านี้จะใช้ได้กับจำนวนเชิงซ้อนที่ไม่เป็นศูนย์ทุกจำนวน
  • : ถ้าการยกกำลังถูกพิจารณาว่าเป็นฟังก์ชันหลายค่า ดังนั้นค่าที่เป็นไปได้ของ (−1×−1) 1/2 คือ {1,  −1} เอกลักษณ์ยังคงเป็นจริง แต่การกล่าวว่า {1} = { (−1×−1) 1/2} นั้นผิด
  • เอกลักษณ์ (ea) b = eab เป็นจริงสำหรับจำนวนจริง a และ b แต่การสมมติให้เอกลักษณ์นี้เป็นจริงสำหรับจำนวนเชิงซ้อนนำไปสู่ปฏิทรรศน์ต่อไปนี้ ซึ่งค้นพบโดยโทมัส คลาวเซน (Thomas Clausen) เมื่อ ค.ศ. 1827
  • : สำหรับจำนวนเต็ม n ใด ๆ จะได้ว่า
  • :#  
  • :#  
  • :#  
  • :#  
  • :#  
  • : แต่สิ่งนี้เป็นเท็จเมื่อจำนวนเต็ม n ไม่เท่ากับศูนย์
  • : การให้เหตุผลดังกล่าวมีปัญหาเกิดขึ้นหลายปัญหา ความผิดพลาดหลักคือการเปลี่ยนอันดับของการยกกำลัง จากบรรทัดที่สองไปยังบรรทัดที่สาม ได้เปลี่ยนค่ามุขสำคัญที่จะถูกเลือกใช้
  • : จากมุมมองของฟังก์ชันหลายค่า ความผิดพลาดอย่างแรกเกิดขึ้นก่อนหน้านั้นซึ่งเห็นได้โดยปริยายจากบรรทัดแรกแต่ไม่เด่นชัด คือ e เป็นจำนวนจริงในขณะที่ผลลัพธ์ของ e1+2πin เป็นจำนวนเชิงซ้อน ซึ่งควรเขียนแทนด้วย e+0i มากกว่า การแทนที่เป็นจำนวนเชิงซ้อนสำหรับจำนวนจริงในบรรทัดที่สอง ทำให้การยกกำลังมีคำตอบที่เป็นไปได้หลายค่า การเปลี่ยนอันดับของการยกกำลังจากบรรทัดที่สองไปยังบรรทัดที่สาม จึงส่งผลต่อค่าที่เป็นไปได้ของผลลัพธ์ว่ามีเป็นจำนวนเท่าใดด้วย

0 ยกกำลัง 0

 
กราฟของ z = abs (x) y ซึ่งเส้นโค้งสีแดงมีลิมิตต่างกันเมื่อ (x, y) มีค่าเข้าใกล้ (0, 0) ในขณะที่เส้นโค้งสีเขียวทุกเส้นมีลิมิตเท่ากับ 1

ผู้เขียนตำราส่วนมากเห็นพ้องกับประโยคที่เกี่ยวข้องกับ 00 ในรายการสองรายการด้านล่าง รายการแรกไม่เกี่ยวกับความต่อเนื่อง ส่วนรายการถัดไปเกี่ยวกับความต่อเนื่อง แต่ "ตัดสินใจ" ไม่เหมือนกันเพื่อที่จะนิยาม 00 หรือไม่นิยาม (ดูรายละเอียดที่มุมมองที่แตกต่างในอดีต)

ในการกำหนดที่ไม่เกี่ยวข้องกับความต่อเนื่องของเลขชี้กำลัง การตีความว่า 00 คือ 1 ช่วยให้สูตรต่าง ๆ ง่ายขึ้นและไม่จำเป็นต้องนำเอาทฤษฎีบทอื่นมาอธิบายเป็นกรณีพิเศษ ตัวอย่างเช่น

  • การพิจารณา a0 ให้เป็นผลคูณว่างซึ่งมีค่าเป็น 1 แม้ว่า a จะเท่ากับ 0
  • การตีความทางคณิตศาสตร์เชิงการจัดถือว่า 00 คือจำนวนของศูนย์สิ่งอันดับของสมาชิกจากเซตว่าง ดังนั้นจึงมีศูนย์สิ่งอันดับหนึ่งตัว
  • ในทางเดียวกัน การตีความทางทฤษฎีเซตของ 00 คือจำนวนฟังก์ชันจากเซตว่างไปยังเซตว่าง ซึ่งมีเพียงหนึ่งฟังก์ชันเท่านั้นนั่นคือ ฟังก์ชันว่าง (empty function)
  • สัญกรณ์   สำหรับพหุนามและอนุกรมกำลังขึ้นอยู่กับการนิยามให้ 00 = 1 เอกลักษณ์อย่างเช่น   และ   และทฤษฎีบททวินาม   จะใช้งานไม่ได้เมื่อ x = 0 ถ้าไม่กำหนดให้ 00 = 1
  • ในแคลคูลัสเชิงอนุพันธ์ กฎการยกกำลัง   จะใช้ไม่ได้สำหรับ n = 1 ที่ x = 0 ถ้าไม่กำหนดให้ 00 = 1

ในทางตรงข้าม เมื่อ 00 เกิดจากลิมิตในรูปแบบ   ซึ่งเป็นการกำหนดที่เกี่ยวข้องกับความต่อเนื่อง จะถูกพิจารณาให้เป็นรูปแบบยังไม่กำหนด (indeterminate form)

  • ลิมิตที่เกี่ยวข้องกับการดำเนินการเชิงพีชคณิต มักจะสามารถประเมินค่าได้ด้วยการแทนที่นิพจน์ย่อยด้วยลิมิตของมัน ถ้านิพจน์ที่เป็นผลลัพธ์ไม่สามารถกำหนดลิมิตดั้งเดิมได้ นิพจน์นั้นจะเรียกว่าเป็นรูปแบบยังไม่กำหนด หาก f (t) และ g (t) ซึ่งเป็นฟังก์ชันที่ให้ผลลัพธ์เป็นจำนวนจริง มีค่าเข้าใกล้ 0 ทั้งคู่ (เมื่อ t มีค่าเข้าใกล้จำนวนจริงจำนวนหนึ่งหรือ ±∞) โดยที่ f (t) > 0 แล้วฟังก์ชัน f (t) g (t) ไม่จำเป็นต้องมีค่าเข้าใกล้ 1 เสมอไป; ลิมิตของ f (t) g (t) อาจให้ผลลัพธ์เป็นจำนวนจริงใด ๆ ที่ไม่เป็นลบหรือ +∞ หรืออาจไม่นิยาม ขึ้นอยู่กับ f และ g ว่านิยามไว้อย่างไร ตัวอย่างเช่น ฟังก์ชันด้านล่างนี้อยู่ในรูปแบบ f (t) g (t) ซึ่ง f (t), g (t)  → 0 เมื่อ t → 0+ แต่ลิมิตของมันมีค่าต่างกันดังนี้
  • ::  
  • : ดังนั้น 00 จึงเป็นรูปแบบยังไม่กำหนดชนิดหนึ่ง พฤติกรรมนี้แสดงให้เห็นว่าฟังก์ชันสองตัวแปร xy แม้ว่าจะต่อเนื่องบนเซต { (x, y) : x > 0} ไม่สามารถขยายเป็นฟังก์ชันต่อเนื่องบนเซตใด ๆ ที่รวม (0, 0) อยู่ด้วย ไม่ว่า 00 จะถูกนิยามขึ้นอย่างไร อย่างไรก็ตาม ภายใต้เงื่อนไขเฉพาะเช่นเมื่อ f กับ g เป็นฟังก์ชันวิเคราะห์ (analytic function) ทั้งคู่และ f ไม่เป็นลบ ลิมิตทางด้านขวาจะเท่ากับ 1 เสมอ
  • ในโดเมนเชิงซ้อน ฟังก์ชัน zw ถูกนิยามขึ้นสำหรับ z ไม่เท่ากับศูนย์ โดยเลือกกิ่งหนึ่งของ log z และกำหนดให้ zw := ew log z แต่ไม่มีกิ่งของ log z ที่นิยามไว้สำหรับ z เท่ากับศูนย์ จึงทิ้งไว้เป็นไม่นิยาม

มุมมองที่แตกต่างในอดีต

ผู้แต่งตำราหลายคนตีความสถานการณ์ข้างต้นในวิธีที่แตกต่างกันเช่น

  • กลุ่มหนึ่งให้เหตุผลว่าค่าที่ดีที่สุดของ 00 ขึ้นอยู่กับบริบท และการนิยามครั้งหนึ่งเพื่อใช้กับทุกกรณีเป็นต้นไปทำให้เกิดปัญหา เบนสัน (Benson) กล่าวว่า "ทางเลือกว่าจะนิยาม 00 หรือไม่นิยาม ขึ้นอยู่กับความสะดวก ไม่ใช่ความถูกต้อง"
  • อีกกลุ่มหนึ่งแย้งว่า 00 ควรจะเท่ากับ 1 คนูธบอกว่าจำนวนนี้ "ต้องเป็น 1" แม้เขาก็ได้กล่าวต่อไปอีกว่า "โคชีก็มีเหตุผลที่ดีในการพิจารณา 00 ให้เป็น รูปแบบลิมิต ที่ไม่นิยาม" และกล่าวอีกว่า "ในความรู้สึกที่แรงกล้าอย่างมาก ค่าของ 00 ได้ถูกนิยามไว้น้อยกว่าค่าของ 0+0 เป็นต้นเสียอีก"

การถกเถียงเกิดขึ้นในช่วงต้นคริสต์ศตวรรษที่ 19 เป็นอย่างน้อย ในเวลานั้นนักคณิตศาสตร์ส่วนมากยอมรับว่า 00 = 1 จนกระทั่งโคชี (Cauchy) ได้แสดงรายการ 00 พร้อมกับนิพจน์อื่น ๆ เช่น 0/0 ในตารางรูปแบบที่ไม่นิยาม ในช่วงคริสต์ทศวรรษ 1830 ลิบรี (Libri) ได้เผยแพร่เกี่ยวกับการให้เหตุผลที่ทำให้ไม่น่าเชื่อว่า 00 = 1 กล่าวคือ การอ้างว่า   เมื่อใดก็ตามที่   เป็นการสันนิษฐานที่ผิด และเมอบิอุส (Möbius) ก็เห็นด้วยกับเขา ผู้ออกความเห็นคนหนึ่งที่ใช้ชื่อว่า "S" ได้ให้ตัวอย่างของการโต้แย้ง (e−1/t) t ตัวอย่างนี้ทำให้การถกเถียงสงบเงียบลงชั่วระยะเวลาหนึ่ง ผลสรุปที่ปรากฏของเรื่องนี้คือ 00 ไม่ควรนิยาม

การปฏิบัติในคอมพิวเตอร์

มาตรฐานจำนวนจุดลอยตัว IEEE

มาตรฐานจำนวนจุดลอยตัว IEEE 754-2008 ใช้ในการออกแบบไลบรารีเกี่ยวกับจำนวนจุดลอยตัวเป็นส่วนมาก มาตรฐานดังกล่าวได้แนะนำฟังก์ชันที่แตกต่างกันสำหรับคำนวณการยกกำลังต่อไปนี้

  • pow ให้ค่า 00 เป็น 1 ฟังก์ชันนี้เป็นรุ่นที่นิยามไว้เก่าที่สุด ถ้ากำลังเป็นจำนวนเต็มอย่างแน่ชัด ผลลัพธ์จะเหมือนกับ pown หากไม่เป็นเช่นนั้นผลลัพธ์จะเหมือนกับ powr (ยกเว้นกรณีพิเศษบางกรณี)
  • pown ให้ค่า 00 เป็น 1 กำลังต้องเป็นจำนวนเต็มอย่างแน่ชัด ฟังก์ชันนี้ได้นิยามสำหรับฐานที่เป็นลบด้วยเช่น pown (−3, 5) ให้ผลลัพธ์ −243
  • powr ให้ค่า 00 เป็น NaN (ไม่ใช่จำนวน คือไม่นิยาม) ฟังก์ชันนี้ก็ยังให้ผลลัพธ์เป็น NaN ในกรณีฐานมีค่าน้อยกว่าศูนย์เช่น powr (−3, 2) ค่าของมันนิยามขึ้นจาก e เลขชี้กำลัง×log (ฐาน)

ภาษาโปรแกรม

ภาษาโปรแกรมส่วนใหญ่ที่มีฟังก์ชันการยกกำลังถูกนำมาทำให้เกิดผลโดยใช้ฟังก์ชัน pow ของ IEEE ดังนั้นมันจึงให้ค่า 00 เป็น 1 มาตรฐานภาษาซีและภาษาซีพลัสพลัสในเวลาต่อมาได้อธิบายสิ่งนี้ว่าเป็นพฤติกรรมเชิงบรรทัดฐาน (normative) มาตรฐานภาษาจาวาก็ประกาศให้ใช้พฤติกรรมนี้ System.Math.Pow ในดอตเน็ตเฟรมเวิร์ก ก็ให้ค่า 00 เป็น 1 เช่นกัน

ซอฟต์แวร์คณิตศาสตร์

  • เซจ ลดรูป a0 เป็น 1 ถ้า a ไม่กำหนดเงื่อนไข ไม่ลดรูป 0a และให้ค่า 00 เป็น 1
  • เมเพิล ลดรูป a0 เป็น 1 และ 0a เป็น 0 ถ้า a ไม่กำหนดเงื่อนไข (แต่รูปแบบอย่างหลังสามารถใช้งานได้เฉพาะเมื่อกำหนดค่า a > 0) และให้ค่า 00 เป็น 1
  • แมกซิมา ก็ลดรูป a0 เป็น 1 และ 0a เป็น 0 ด้วยเช่นกัน ถ้า a ไม่กำหนดเงื่อนไข แต่จะเกิดข้อผิดพลาดสำหรับ 00
  • แมเทอแมติกาและวุลแฟรมแอลฟา ลดรูป a0 เป็น 1 ถ้า a ไม่กำหนดเงื่อนไข แมเทอแมติกาไม่ลดรูป 0a ในขณะที่วุลแฟรมแอลฟาให้ผลลัพธ์สองอย่างคือ 0 และรูปแบบยังไม่กำหนด ทั้งแมเทอแมติกาและวุลแฟรมแอลฟาให้ค่า 00 เป็นรูปแบบยังไม่กำหนด

หมายเหตุ "ลดรูป" หมายถึง ให้ค่าผลลัพธ์โดยอัตโนมัติ แม้จะไม่ระบุค่าของ a

ลิมิตของการยกกำลัง

หัวข้อ 0 ยกกำลัง 0 ได้แสดงตัวอย่างลิมิตของรูปแบบยังไม่กำหนด 00 ไว้จำนวนหนึ่ง ตัวอย่างเหล่านี้มีลิมิตต่าง ๆ แต่มีค่าแตกต่างกัน แสดงให้เห็นว่าฟังก์ชันสองตัวแปร xy ไม่มีลิมิตที่จุด (0, 0) จึงอาจเกิดคำถามว่าฟังก์ชันนี้มีลิมิตที่จุดไหนบ้าง

เพื่อความถูกต้องยิ่งขึ้น พิจารณาฟังก์ชัน f (x, y)  = xy ที่นิยามบนโดเมน D = { (x, y)  ∈ R2 : x > 0} ดังนั้น D อาจถูกมองว่าเป็นเซตย่อยของ R2 (นั่นคือเซตของคู่อันดับ (x, y) ทั้งหมด ซึ่ง x, y อยู่บนเส้นจำนวนจริงขยาย R = [−∞,  +∞] โดยสร้างขึ้นจากทอพอโลยีผลคูณ) ซึ่งจะรวมจุดต่าง ๆ ที่ทำให้ฟังก์ชัน f มีลิมิต

โดยข้อเท็จจริง f จะมีลิมิตที่จุดสะสม (accumulation point) ต่าง ๆ ของ D ยกเว้น (0, 0), (+∞, 0), (1, +∞) และ (1, −∞) ด้วยเหตุนี้เราจึงสามารถนิยามการยกกำลัง xy ด้วยความต่อเนื่องเมื่อใดก็ตามที่ 0 ≤ x ≤ +∞, −∞ ≤ y ≤ +∞ โดยยกเว้น 00, (+∞) 0, 1+∞ และ 1−∞ ซึ่งเหลือเป็นรูปแบบยังไม่กำหนด

ภายใต้การนิยามโดยความต่อเนื่องนี้ จะได้

  • a+∞ = +∞ และ a−∞ = 0 เมื่อ 1 < a ≤ +∞
  • a+∞ = 0 และ a−∞ = +∞ เมื่อ 0 ≤ a < 1
  • 0b = 0 และ (+∞) b = +∞ เมื่อ 0 < b ≤ +∞
  • 0b = +∞ และ (+∞) b = 0 เมื่อ −∞ ≤ b < 0

กำลังเหล่านี้ได้มาจากการหาลิมิตของ xy สำหรับค่า x ที่เป็นบวก วิธีการนี้ไม่อนุญาตให้นิยาม xy เมื่อ x < 0 เพราะคู่อันดับ (x, y) ต่าง ๆ ที่ x < 0 ไม่ใช่จุดสะสมของ D

ในอีกทางหนึ่ง เมื่อ n เป็นจำนวนเต็ม การยกกำลัง xn มีความหมายอยู่แล้วสำหรับ x ทุกค่าซึ่งรวมทั้งค่าลบด้วย สิ่งนี้อาจทำให้การนิยาม 0n = +∞ ที่ได้มาข้างต้นสำหรับค่า n ที่เป็นลบเกิดปัญหาเมื่อ n เป็นจำนวนคี่ เนื่องจากกรณีนี้ tn → +∞ เมื่อ t มีค่าเข้าใกล้ 0 ทางบวก แต่ไม่ใช่ทางลบ

การคำนวณกำลังจำนวนเต็มอย่างมีประสิทธิภาพ

วิธีการคำนวณที่ง่ายที่สุดของ an คือการคูณเป็นจำนวน n−1 ครั้ง แต่มันก็อาจคำนวณได้อย่างมีประสิทธิภาพมากขึ้นดังตัวอย่างต่อไปนี้ เช่นโจทย์ให้คำนวณ 2100 แต่เราทราบว่า 100 = 64 + 32 + 4 เราอาจคำนวณตามลำดับดังนี้

  1. 22 = 4
  2. (22) 2 = 24 = 16
  3. (24) 2 = 28 = 256
  4. (28) 2 = 216 = 65,536
  5. (216) 2 = 232 = 4,294,967,296
  6. (232) 2 = 264 = 18,446,744,073,709,551,616
  7. 264 232 24 = 2100 = 1,267,650,600,228,229,401,496,703,205,376

ขั้นตอนเหล่านี้จำเป็นต้องใช้การคูณเพียงแค่ 8 ครั้ง (ผลคูณในขั้นตอนสุดท้ายใช้การคูณ 2 ครั้ง) แทนที่จะต้องคูณถึง 99 ครั้ง

จำนวนครั้งของการคูณที่จำเป็นสำหรับคำนวณ an โดยทั่วไปสามารถลดให้เหลือ Θ (log n) โดยใช้การยกกำลังด้วยกำลังสอง (exponentiation by squaring) หรือโดยนัยทั่วไปขึ้นอีกคือ การยกกำลังด้วยลูกโซ่การบวก (addition-chain exponentiation) การหาลำดับของการคูณ น้อยที่สุด ของ an (ลูกโซ่การบวกสั้นที่สุดของเลขชี้กำลัง) เป็นข้อปัญหาที่ยากข้อหนึ่ง เพราะขั้นตอนวิธีอันมีประสิทธิภาพยังไม่เป็นที่ทราบในปัจจุบัน (ดูเพิ่มที่ปัญหาผลรวมเซตย่อย) แต่ขั้นตอนวิธีแบบศึกษาสำนึก (heuristic) ที่มีประสิทธิภาพอย่างสมเหตุสมผลก็มีให้ใช้มากมาย

สัญกรณ์ยกกำลังสำหรับชื่อฟังก์ชัน

การใส่ตัวยกจำนวนเต็มถัดจากชื่อหรือสัญลักษณ์ของฟังก์ชัน ซึ่งดูเหมือนว่าฟังก์ชันนั้นกำลังถูกยกกำลัง โดยทั่วไปจะหมายถึงการประกอบฟังก์ชัน (function composition) มากกว่าจะเป็นการคูณซ้ำ ๆ ดังนั้น f 3 (x) จึงอาจหมายถึง f (f (f (x) ) ) โดยเฉพาะอย่างยิ่ง f −1 (x) ตามปกติใช้แสดงถึงฟังก์ชันผกผันของ f; ฟังก์ชันซ้อน (iterated function) ที่เกิดจากการประกอบฟังก์ชันเป็นประโยชน์ในการศึกษาแฟร็กทัลและระบบเชิงพลวัต (dynamical system) ชาร์ลส แบบเบจ เป็นคนแรกที่เริ่มศึกษาปัญหาการหาค่าของรากที่สองเชิงฟังก์ชัน f 1/2 (x)

อย่างไรก็ตาม ฟังก์ชันตรีโกณมิติก็ใช้สัญกรณ์พิเศษเช่นนั้นด้วยเหตุผลทางประวัติศาสตร์ กล่าวคือ เลขชี้กำลังที่เป็นบวกถูกวางไว้หลังชื่อย่อของฟังก์ชัน หมายถึงผลลัพธ์ของการยกกำลังด้วยเลขชี้กำลังนั้น ในขณะที่เลขชี้กำลัง −1 แสดงถึงฟังก์ชันผกผัน ตัวอย่างเช่น sin2x เป็นการเขียนอย่างย่อแทน (sin x) 2 โดยไม่ใช้วงเล็บ แต่ในขณะเดียวกัน sin−1x หมายถึงฟังก์ชันผกผันของไซน์คือ arcsin x เพราะมันไม่จำเป็นต้องมีส่วนกลับของฟังก์ชันตรีโกณมิติเนื่องจากมันมีชื่อและชื่อย่อของมันเองอยู่แล้ว เช่น 1/ (sin x) = (sin x) −1 ก็คือ csc x เป็นต้น สัญนิยมที่คล้ายกันนี้ก็ใช้กับลอการิทึมด้วย เช่น log2x หมายถึง (log x) 2 ไม่ใช่ log log x

การวางนัยทั่วไป

พีชคณิตนามธรรม

การยกกำลังที่มีเลขชี้กำลังเป็นจำนวนเต็ม สามารถนิยามขึ้นสำหรับโครงสร้างที่ค่อนข้างทั่วไปในพีชคณิตนามธรรม

กำหนดให้ X เป็นเซตที่มีการดำเนินการทวิภาคอย่างหนึ่ง ซึ่งมีสมบัติการเปลี่ยนหมู่ของกำลัง (power associativity) และเขียนอยู่ในรูปแบบการคูณแล้ว xn ถูกนิยามให้เป็นผลคูณของ x จำนวน n ตัว สำหรับสมาชิก x ใด ๆ ของ X และจำนวนธรรมชาติ n ใด ๆ ที่ไม่เป็นศูนย์ ซึ่งนิยามแบบเวียนเกิดได้ว่า

 
 

จะมีสมบัติต่าง ๆ ดังต่อไปนี้

  •   (สมบัติการเปลี่ยนหมู่ของกำลัง)
  •  
  •  

ถ้าการดำเนินการนี้มีสมาชิกเอกลักษณ์ทั้งสองด้านเป็น 1 (มักแสดงด้วย e) ดังนั้น x0 จะถูกนิยามให้เท่ากับ 1 สำหรับค่า x ใด ๆ

  •   (เอกลักษณ์สองด้าน)
  •  

ถ้าการดำเนินการนี้ก็มีสมาชิกผกผันทั้งสองด้านและการคูณเปลี่ยนหมู่ได้ จะทำให้แม็กม่า (magma) กลายเป็นกรุป ตัวผกผันของ x สามารถแสดงได้ด้วย x−1 และเป็นไปตามกฎปกติทั้งหมดของเลขชี้กำลัง

  •   (ตัวผกผันสองด้าน)
  •   (การคูณเปลี่ยนหมู่ได้)
  •  
  •  

ถ้าการคูณสามารถสลับที่ได้ (ตัวอย่างเช่นในอาบีเลียนกรุป) จะทำให้การดำเนินการมีสมบัตินี้ด้วย

  •  

ถ้าการดำเนินการทวิภาคนั้นเขียนอยู่ในรูปแบบการบวก ซึ่งมักใช้กับอาบีเลียนกรุป ดังนั้นวลี "การยกกำลังคือการคูณซ้ำ ๆ" จึงสามารถตีความได้เป็น "การคูณคือการบวกซ้ำ ๆ" เพราะฉะนั้นกฎแต่ละข้อของการยกกำลังข้างต้นก็เทียบเคียงได้กับกฎต่าง ๆ ของการคูณ

เมื่อเรามีการดำเนินการหลายอย่างแล้ว การดำเนินการใด ๆ อาจถูกกระทำซ้ำโดยใช้การยกกำลัง การแสดงว่าการดำเนินการกำลังถูกกระทำซ้ำ โดยปกติจะใส่สัญลักษณ์กำกับตัวยก อาทิ xn หมายถึง x ∗ ··· ∗ x หรือ x#n หมายถึง x # ··· # x ไม่ว่า ∗ กับ # จะเป็นการดำเนินการอะไรก็ตาม

สัญกรณ์ตัวยกก็มีใช้เช่นกัน โดยเฉพาะในเรื่องทฤษฎีกรุป เพื่อแสดงการสังยุค (conjugation) อาทิ gh = h−1gh เมื่อ g และ h เป็นสมาชิกของกรุปบางกรุป แม้ว่าการสังยุคจะปฏิบัติตามกฎของการยกกำลังเหมือนกัน แต่ไม่ใช่ตัวอย่างของการคูณซ้ำในกรณีใด ๆ ; ควอนเดิล (quandle) เป็นโครงสร้างเชิงพีชคณิตชนิดหนึ่งที่มีกฎของการสังยุคเหล่านี้เป็นบทบาทหลัก

เซต

ดูบทความหลักที่: ผลคูณคาร์ทีเซียน

ถ้า n เป็นจำนวนธรรมชาติและ A เป็นเซตใด ๆ นิพจน์ An มักถูกใช้เพื่อแสดงเซตของ n สิ่งอันดับของสมาชิกของ A สิ่งนี้เทียบเท่ากับการกำหนดให้ An หมายถึงเซตของฟังก์ชันจาก {0,  1,  2,  ...,  n−1} ไปยัง A; n สิ่งอันดับ (a0,  a1,  a2,  ...,  an−1) เป็นตัวแทนของฟังก์ชันที่ส่งค่าจาก i ไปยัง ai

กำหนดให้จำนวนเชิงการนับ κ ที่ไม่จำกัดและเซต A เซตหนึ่ง สัญกรณ์ Aκ ก็ยังใช้แสดงถึงเซตของฟังก์ชันทั้งหมดจากเซตที่มีขนาดเท่ากับ κ ไปยัง A บางครั้งก็เขียนในรูปแบบ κA เพื่อทำให้แตกต่างจากการยกกำลังเชิงการนับ ดังที่จะได้กล่าวต่อไป

การยกกำลังแบบนัยทั่วไปสามารถนิยามขึ้นได้สำหรับการดำเนินการบนเซต หรือสำหรับเซตที่มีโครงสร้างพิเศษเพิ่มเติม ตัวอย่างเช่นในพีชคณิตเชิงเส้น เราสามารถแจกแจงดัชนีผลบวกตรงของปริภูมิเวกเตอร์บนเซตดัชนีใด ๆ หรืออาจกล่าวได้ว่า

 

เมื่อ Vi แต่ละตัวคือปริภูมิเวกเตอร์ปริภูมิหนึ่ง ดังนั้นถ้า Vi = V สำหรับแต่ละค่า i แล้ว ผลลัพธ์จากผลบวกตรงสามารถเขียนให้อยู่ในสัญกรณ์ยกกำลังเป็น VN หรือเขียนเพียงแค่ VN โดยทำความเข้าใจว่าเป็นผลบวกตรงโดยปริยาย นอกจากนี้เราอาจแทนที่เซต N ด้วยจำนวนเชิงการนับ n เพื่อให้ได้ Vn แม้ว่าไม่ต้องเลือกเซตมาตรฐานเจาะจงที่มีภาวะเชิงการนับเป็น n สิ่งนี้สามารถนิยามโดยขึ้นอยู่กับสมสัณฐาน (isomorphism) เพียงเท่านั้น เมื่อนำเอา V มาเป็นฟีลด์ R สำหรับจำนวนจริง (เทียบได้กับปริภูมิเวกเตอร์บนตัวเอง) และ n เป็นจำนวนธรรมชาติบางจำนวน จะได้ปริภูมิเวกเตอร์สามัญที่สุดที่ศึกษากันในพีชคณิตเชิงเส้น นั่นคือปริภูมิแบบยุคลิด Rn

ถ้าหากฐานของการดำเนินการยกกำลังเป็นเซต การดำเนินการนั้นจะเรียกว่าผลคูณคาร์ทีเซียนเมื่อไม่มีเงื่อนไขอื่นเพิ่มเติม เนื่องด้วยผลคูณคาร์ทีเซียนต่าง ๆ ให้ผลเป็น n สิ่งอันดับ (n-tuple) ซึ่งสามารถแสดงแทนด้วยฟังก์ชันบนเซตที่มีภาวะเชิงการนับที่เหมาะสม ดังนั้น SN จึงหมายถึงเซตของฟังก์ชันทั้งหมดจาก N ไปยัง S ในกรณีนี้

 

สิ่งนี้เข้ากันได้กับการยกกำลังของจำนวนเชิงการนับในแง่ที่ว่า |SN| = |S||N| เมื่อ |X| หมายถึงภาวะเชิงการนับของ X; เมื่อ "2" ถูกนิยามเป็นเซต {0, 1} เราจะได้ |2X| = 2|X| เมื่อ 2X ซึ่งโดยปกติแสดงด้วย P (X) คือเซตกำลังของ X; เซตย่อย Y แต่ละเซตของ X สอดคล้องกันแบบหนึ่งต่อหนึ่งกับฟังก์ชันบน X ที่ให้ค่า 1 สำหรับ x ∈ Y และค่า 0 สำหรับ x ∉ Y

ทฤษฎีประเภท

ดูบทความหลักที่: ประเภทปิดคาร์ทีเซียน

ในเรื่องของประเภทปิดคาร์ทีเซียน (Cartesian closed category) การดำเนินการยกกำลังถูกใช้เพื่อกำหนดให้อ็อบเจกต์ใด ๆ เป็นกำลังของอ็อบเจกต์อีกอย่างหนึ่ง สิ่งนี้เป็นการวางนัยทั่วไปของผลคูณคาร์ทีเซียนในประเภท (category) ของเซต ถ้า 0 เป็นอ็อบเจกต์เริ่มต้น (initial object) ในประเภทปิดคาร์ทีเซียน ดังนั้นอ็อบเจกต์เลขชี้กำลัง (exponential object) 00 จะสมสัณฐานกับอ็อบเจกต์ปลายทาง 1 ใด ๆ

จำนวนเชิงการนับและจำนวนเชิงอันดับที่

ดูบทความหลักที่: เลขคณิตเชิงการนับ และ เลขคณิตเชิงอันดับที่

ในทฤษฎีเซต ก็มีการยกกำลังสำหรับจำนวนเชิงการนับและจำนวนเชิงอันดับที่เช่นกัน

กำหนดให้ κ และ λ เป็นจำนวนเชิงการนับ นิพจน์ κλ หมายถึงภาวะเชิงการนับของ เซตของฟังก์ชันจากเซตใด ๆ ที่มีภาวะเชิงการนับ λ ไปยังเซตใด ๆ ที่มีภาวะเชิงการนับ κ ถ้า κ และ λ เป็นจำนวนจำกัด นิพจน์นี้จะคล้อยตามการดำเนินการยกกำลังเชิงเลขคณิตธรรมดา ตัวอย่างเช่น เซตของสามสิ่งอันดับ ของสมาชิกจากเซตของสองสิ่งอันดับ จะมีภาวะเชิงการนับเท่ากับ 8 = 23

การยกกำลังของจำนวนเชิงการนับแตกต่างจากการยกกำลังของจำนวนเชิงอันดับที่ ซึ่งนิยามโดยกระบวนการลิมิตที่เกี่ยวข้องกับอุปนัยเชิงอนันต์ (transfinite induction)

การยกกำลังซ้อน

เนื่องจากการยกกำลังของจำนวนธรรมชาติมีเหตุมาจากการคูณซ้ำ ๆ จึงมีความเป็นไปได้ที่จะนิยามการดำเนินการที่มีเหตุมาจากการยกกำลังซ้ำ ๆ เช่นเดียวกัน การดำเนินการนี้บางครั้งเรียกว่า เทเทรชัน (tetration) และเทเทรชันซ้ำ ๆ ก็สามารถนำไปสู่การดำเนินการอีกอย่างหนึ่งเช่นกัน เป็นเช่นนี้ต่อไปเรื่อย ๆ ลำดับของการดำเนินการเหล่านี้ได้ถูกแสดงไว้ด้วยฟังก์ชันอัคเคอร์มันน์ (Ackermann function) และสัญกรณ์ลูกศรของคนูธ (Knuth's up-arrow notation) และเนื่องด้วยการยกกำลังมีอัตราเพิ่มขึ้นมากกว่าการคูณ การคูณก็มีอัตราเพิ่มขึ้นมากกว่าการบวก ดังนั้นเทเทรชันก็มีอัตราเพิ่มขึ้นมากกว่าการยกกำลัง ตัวอย่างเช่น เมื่อกำหนดค่า (3, 3) ให้กับฟังก์ชันการบวก การคูณ การยกกำลัง และเทเทรชัน จะได้ผลลัพธ์ออกมาเป็น 6, 9, 27 และ 7,625,597,484,987 ตามลำดับ

ในภาษาโปรแกรม

สัญกรณ์ตัวยก xy สะดวกในการเขียนด้วยมือ แต่อาจไม่สะดวกในการกดบนเครื่องพิมพ์ดีดหรือคอมพิวเตอร์เทอร์มินัล ซึ่งจัดอักขระทุกตัวอยู่บนเส้นบรรทัดเดียวกัน ภาษาโปรแกรมหลายภาษามีวิธีการอย่างอื่นในการแสดงการยกกำลังโดยไม่ใช้ตัวยก อาทิ

  • x ↑ y: อัลกอล, คอมโมดอร์เบสิก
  • x ^ y: เบสิก, เจ, แมตแล็บ, อาร์, ไมโครซอฟท์ เอ็กเซล, เทกซ์ (TeX และตัวต่อยอดอื่น ๆ), ทีไอ-เบสิก, บีซี (เลขชี้กำลังจำนวนเต็ม), แฮสเกลล์ (เลขชี้กำลังจำนวนเต็มที่ไม่เป็นลบ), ลัว (Lua), เอเอสพี และระบบพีชคณิตคอมพิวเตอร์ส่วนใหญ่
  • x ^^ y: แฮสเกลล์ (ฐานเศษส่วน เลขชี้กำลังจำนวนเต็ม), ดี
  • x ** y: เอดา, แบช, โคบอล, ฟอร์แทรน, ฟอกซ์โพร, กนูพล็อต, โอแคเมล, เพิร์ล, พีแอล/วัน, ไพทอน, เรกซ์ (REXX), รูบี, แซส (SAS), ทีซีแอล, อาบัป, แฮสเกลล์ (เลขชี้กำลังจำนวนจุดลอยตัว), ทัวริง, วีเอชดีแอล
  • x⋆y: เอพีแอล
  • Power (x, y) : ไมโครซอฟท์ เอ็กเซล, เดลฟี/ปาสกาล (ประกาศในยูนิต Math)
  • pow (x, y) : ซี, ซีพลัสพลัส, พีเอชพี, ทีซีแอล
  • math.pow (x, y) : ไพทอน
  • Math.pow (x, y) : จาวา, จาวาสคริปต์, มอดูลา-3, เอ็มแอลมาตรฐาน
  • Math.Pow (x, y) หรือ BigInteger.Pow (x, y) : ซีชาร์ป (และภาษาอื่นที่ใช้บีซีแอล)
  • (expt x y) : คอมมอนลิสป์, สกีม
  • math:pow (x, y) : เออร์แลง

สัญลักษณ์ ^ ที่ไม่เกี่ยวกับการยกกำลังเช่น ในแบช ซี ซีพลัสพลัส ซีชาร์ป จาวา จาวาสคริปต์ เพิร์ล พีเอชพี ไพทอน และรูบี หมายถึงการดำเนินการ XOR ระดับบิต; ในปาสกาล หมายถึงการอ้างถึงทางอ้อม (indirection); ในโอแคเมลและเอ็มแอลมาตรฐาน หมายถึงการต่อสายอักขระ (concatenation)

ประวัติของสัญกรณ์

คำว่า กำลัง (power) ถูกใช้โดยยุคลิด นักคณิตศาสตร์ชาวกรีก สำหรับยกกำลังสองเส้นตรง ในคริสต์ศตวรรษที่ 9 มุฮัมมัด อิบน์ มูซา อัลคอวาริซมีย์ (Muḥammad ibn Mūsā al-Khwārizmī) ใช้คำว่า มัล (mal) สำหรับยกกำลังสองและ กับ (kab) สำหรับยกกำลังสาม ในเวลาต่อมานักคณิตศาสตร์ชาวอิสลามได้ใช้ m และ k เป็นสัญกรณ์คณิตศาสตร์ตามลำดับ ดังเห็นได้จากงานเขียนของ อะบู อัลฮะซัน อิบน์ อะลี อัลเกาะละศอดี (Abū al-Ḥasan ibn ʿAlī al-Qalaṣādī) ในคริสต์ศตวรรษที่ 15

นีโกลา ชูว์เก (Nicolas Chuquet) ใช้รูปแบบสัญกรณ์ยกกำลังในคริสต์ศตวรรษที่ 15 ต่อมาในคริสต์ศตวรรษที่ 16 เฮนรีคุส กรัมมาทอยส์ (Henricus Grammateus) และมีคาเอล ชตีเฟิล (Michael Stifel) ก็ใช้เช่นกัน แซมวล จีก (Samuel Jeake) ได้แนะนำให้ใช้คำว่า ดัชนี (index) ในปี ค.ศ. 1696 ในคริสต์ศตวรรษที่ 16 โรเบิร์ต เรคอร์ด (Robert Recorde) ใช้คำว่า สแควร์ (square), คิวบ์ (cube), เซนซิเซนซิก (zenzizenzic), เซอร์ฟอไลด์ (surfolide), เซนซิคิวบ์ (zenzicube), เซเคินด์เซอร์ฟอไลด์ (second surfolide) และ เซนซิเซนซิเซนซิก (zenzizenzizenzic) สำหรับการยกกำลังสองถึงแปดตามลำดับ นอกจากนี้ก็มีการใช้คำว่า ไบควอเดรต (biquadrate) เพื่ออ้างถึงการยกกำลังสี่อีกด้วย

นักคณิตศาสตร์บางคน (เช่นไอแซก นิวตัน) ใช้เลขชี้กำลังเฉพาะเมื่อมีกำลังมากกว่าสอง และนิยมแสดงกำลังสองเป็นการคูณซ้ำสองตัว ดังนั้นเมื่อพวกเขาเขียนพหุนาม พวกเขาจะเขียนเป็นรูปแบบดังตัวอย่าง ax + bxx + cx3 + d เป็นต้น

คำอีกคำหนึ่งที่มีความหมายเหมือนการยกกำลังในอดีตคือ อินโวลูชัน (involution) แต่ในปัจจุบันความหมายที่สามัญกว่าของคำนี้คือ อาวัตนาการ (involution) คือฟังก์ชันที่เป็นฟังก์ชันผกผันของตัวเอง

อ้างอิง

  1. นิยามของรากปฐมฐานมุขสำคัญ สามารถพบได้ในแหล่งข้อมูลต่อไปนี้
    • Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein (2001). Introduction to Algorithms (second ed.). MIT Press. ISBN 0262032937.CS1 maint: multiple names: authors list (link) Online resource
    • Paul Cull, Mary Flahive, and Robby Robson (2005). Difference Equations: From Rabbits to Chaos (Undergraduate Texts in Mathematics ed.). Springer. ISBN 0387232346.CS1 maint: multiple names: authors list (link) Defined on page 351, available on Google books.
    • "Principal root of unity", MathWorld.
  2. Complex number to a complex power may be real ที่คัตเดอะนอต ให้ข้อมูลอ้างอิงสำหรับ i i
  3. Steiner J, Clausen T, Abel NH (1827). "Aufgaben und Lehrsätze, erstere aufzulösen, letztere zu beweisen". Journal für die reine und angewandte Mathematik. 2: 286–287.CS1 maint: multiple names: authors list (link)
  4. N. Bourbaki, Elements of Mathematics, Theory of Sets, Springer-Verlag, 2004, III.§3.5.
  5. "Some textbooks leave the quantity 00 undefined, because the functions x0 and 0x have different limiting values when x decreases to 0. But this is a mistake. We must define x0 = 1, for all x, if the binomial theorem is to be valid when x = 0, y = 0, and/or x = −y. The binomial theorem is too important to be arbitrarily restricted! By contrast, the function 0x is quite unimportant".Ronald Graham, Donald Knuth, and Oren Patashnik (1989-01-05). "Binomial coefficients". Concrete Mathematics (1st ed.). Addison Wesley Longman Publishing Co. p. 162. ISBN 0-201-14236-8.CS1 maint: multiple names: authors list (link)
  6. Malik, S. C. (1992). Mathematical Analysis. New York: Wiley. p. 223. ISBN 978-8122403237. In general the limit of φ (x) /ψ (x) when x=a in case the limits of both the functions exist is equal to the limit of the numerator divided by the denominator. But what happens when both limits are zero? The division (0/0) then becomes meaningless. A case like this is known as an indeterminate form. Other such forms are ∞/∞ 0×∞, ∞−∞, 00, 1 and ∞0. Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. L. J. Paige (1954). "A note on indeterminate forms". American Mathematical Monthly. 61 (3): 189–190. doi:10.2307/2307224. Unknown parameter |month= ignored (help)
  8. sci.math FAQ: What is 0^0?
  9. Rotando, Louis M.; Korn, Henry (1977). "The Indeterminate Form 00". Mathematics Magazine. Mathematical Association of America. 50 (1): 41–42. doi:10.2307/2689754.
  10. Lipkin, Leonard J. (2003). "On the Indeterminate Form 00". The College Mathematics Journal. Mathematical Association of America. 34 (1): 55–56. doi:10.2307/3595845.
  11. "... Let's start at x = 0. Here xx is undefined." Mark D. Meyerson, The xx Spindle, Mathematics Magazine 69, no. 3 (June 1996), 198-206.
  12. Examples include Edwards and Penny (1994). Calculus, 4th ed, , Prentice-Hall, p. 466, and Keedy, Bittinger, and Smith (1982). Algebra Two. Addison-Wesley, p. 32.
  13. Donald C. Benson, The Moment of Proof : Mathematical Epiphanies. New York Oxford University Press (UK), 1999. ISBN 978-0-19-511721-9
  14. Donald E. Knuth, Two notes on notation, Amer. Math. Monthly 99 no. 5 (May 1992), 403–422.
  15. Augustin-Louis Cauchy, Cours d'Analyse de l'École Royale Polytechnique (1821). In his Oeuvres Complètes, series 2, volume 3.
  16. Guillaume Libri, Note sur les valeurs de la fonction 00x, Journal für die reine und angewandte Mathematik 6 (1830), 67–72.
  17. Guillaume Libri, Mémoire sur les fonctions discontinues, Journal für die reine und angewandte Mathematik 10 (1833), 303–316.
  18. A. F. Möbius, Beweis der Gleichung 00 = 1, nach J. F. Pfaff, Journal für die reine und angewandte Mathematik 12 (1834), 134–136.
  19. Handbook of Floating-Point Arithmetic. Birkhäuser Boston. 2009. p. 216. ISBN 978-0817647049.
  20. John Benito (April 2003). "Rationale for International Standard—Programming Languages—C" (PDF). Revision 5.10: 182. Cite journal requires |journal= (help)
  21. %20double%29 "Math (Java 2 Platform SE 1.4.2) pow" Check |url= value (help). Oracle.
  22. ".NET Framework Class Library Math.Pow Method". Microsoft.
  23. "Sage worksheet calculating x^0". Jason Grout.
  24. "Wolfram Alpha calculates a^0". Wolfram Alpha LLC, accessed July 24, 2011.
  25. "Wolfram Alpha calculates 0^a". Wolfram Alpha LLC, accessed July 24, 2011.
  26. "Wolfram Alpha calculates 0^0". Wolfram Alpha LLC, accessed July 24, 2011.
  27. N. Bourbaki, Topologie générale, V.4.2.
  28. Gordon, D. M. 1998. A survey of fast exponentiation methods. J. Algorithms 27, 1 (Apr. 1998), 129-146. doi:http://dx.doi.org/10.1006/jagm.1997.0913
  29. O'Connor, John J.; Robertson, Edmund F., "Etymology of some common mathematical terms", MacTutor History of Mathematics archive, University of St Andrews.
  30. O'Connor, John J.; Robertson, Edmund F., "Abu'l Hasan ibn Ali al Qalasadi", MacTutor History of Mathematics archive, University of St Andrews.
  31. Quinion, Michael, "Zenzizenzizenzic - the eighth power of a number", World Wide Words, สืบค้นเมื่อ 2010-03-19
  32. คำจำกัดความของ involution ปรากฏใน OED second edition ตีพิมพ์เมื่อ ค.ศ. 1989 และ Merriam-Webster online dictionary [1] การใช้ล่าสุดในความหมายนี้อ้างอิงโดย OED ตีพิมพ์เมื่อ ค.ศ. 1806.

ดูเพิ่ม

แหล่งข้อมูลอื่น

  • sci.math FAQ: What is 00?
  • Introducing 0th power on PlanetMath
  • Laws of Exponents with derivation and examples
  • What does 0^0 (zero to the zeroth power) equal? on AskAMathematician.com
  • เลขยกกำลังพื้นฐาน
  • เลขยกกำลังในรูปแบบเศษส่วน

การยกกำล, อการดำเน, นการทางคณ, ตศาสตร, อย, างหน, เข, ยนอย, ในร, งประกอบด, วยสองจำนวนค, ฐาน, และ, เลขช, กำล, หร, กำล, ความหมายเหม, อนการค, ณซ, ณก, นเป, นจำนวน, เม, เป, นจำนวนเต, มบวก, displaystyle, underbrace, times, cdots, times, คล, ายก, บการค, ณซ, งม, ความหม. karykkalng khuxkardaeninkarthangkhnitsastrxyanghnung ekhiynxyuinrup an sungprakxbdwysxngcanwnkhux than a aela elkhchikalng hrux kalng n karykkalngmikhwamhmayehmuxnkarkhunsa kn khux a khunknepncanwn n tw emux n epncanwnetmbwk a n a a n displaystyle a n underbrace a times cdots times a n dd khlaykbkarkhunsungmikhwamhmayehmuxnkarbwksa kn a n a a n displaystyle a times n underbrace a cdots a n dd odypktielkhchikalngcaaesdngepntwykxyudankhwakhxngthan canwn an xanwa a ykkalng n hruxephiyngaekh a kalng n inphasaxngkvsxaceriykkarykkalngbangtwtangxxkipechn a2 caeriykwa square aela a3 eriykwa cube epntn emuxtwykimsamarthichidechninkhxkhwamaexski kmirupaebbkarekhiynxyangxunthiichknxathi a n aela a n epntnelkhykkalng an xacniyamih n epncanwnetmlbkidemuxkha a imepnsuny tampktiimsamarthkracaycanwncring a kb n idthuk khaodythrrmchati aetemuxthan a epncanwncringbwk canwn an samarthniyamelkhchikalng n idthukkhaaemaetcanwnechingsxnphanfngkchnelkhchikalng ez fngkchntrioknmitiksamarthekhiynihxyuinrupkhxngkarykkalngidkarykkalngthimielkhchikalngepnemthriksichsahrbkarhakhatxbkhxngrabbsmkarechingxnuphnthechingesnkarykkalngkichnganinkhwamrusakhaxunxyangaephrhlayechnesrsthsastr chiwwithya ekhmi fisiks aelawithyakarkhxmphiwetxr inkarichngankhanwnxyangechndxkebiythbtn karephimprachakr clnphlsastrekhmi phvtikrrmkhxngkhlun aelakarekharhslbaebbkuyaecxsmmatr epntn krafkhxngsmkar y ax inthan a tang than 10 siekhiyw than e siaedng than 2 sinaengin aelathan sifa esnokhngaetlaesnphancud 0 1 enuxngcakcanwnthiimepnsunyid ykkalng 0 caid 1 aelathi x 1 khakhxng y caethakbthan enuxngcakcanwnid ykkalng 1 caidcanwnedim enuxha 1 elkhchikalngepncanwnetm 1 1 elkhchikalngepncanwnetmbwk 1 2 elkhchikalngepn 0 hrux 1 1 3 khwamhmaythangkhnitsastrechingkarcd 1 4 elkhchikalngepncanwnetmlb 1 5 exklksnaelasmbti 1 6 kalngkhxng 10 1 7 kalngkhxng 2 1 8 kalngkhxng 1 1 9 kalngkhxng 0 1 10 kalngkhxng 1 1 11 elkhchikalngkhnadihy 2 kalngcanwncringkhxngcanwncringbwk 2 1 rakthi n mukhsakhy 2 2 elkhchikalngepncanwntrrkya 2 3 kalngkhxng e 2 4 elkhchikalngepncanwncring 3 rakthi n thiepnlb 4 kalngcanwnechingsxnkhxngcanwncringbwk 4 1 kalngcanwncintphaphkhxng e 4 2 fngkchntrioknmiti 4 3 kalngcanwnechingsxnkhxng e 4 4 kalngcanwnechingsxnkhxngcanwncringbwk 5 kalngkhxngcanwnechingsxn 5 1 kalngcanwnechingsxnkhxngcanwnechingsxn 5 2 rakechingsxnkhxng 1 rakpthmthan 5 3 rakkhxngcanwnechingsxnodythwip 5 4 karkhanwnkalngcanwnechingsxn 5 5 khwamphidphladkhxngexklksnkalngaelalxkarithum 6 0 ykkalng 0 6 1 mummxngthiaetktanginxdit 6 2 karptibtiinkhxmphiwetxr 6 2 1 matrthancanwncudlxytw IEEE 6 2 2 phasaopraekrm 6 2 3 sxftaewrkhnitsastr 7 limitkhxngkarykkalng 8 karkhanwnkalngcanwnetmxyangmiprasiththiphaph 9 sykrnykkalngsahrbchuxfngkchn 10 karwangnythwip 10 1 phichkhnitnamthrrm 10 2 est 10 3 thvsdipraephth 10 4 canwnechingkarnbaelacanwnechingxndbthi 11 karykkalngsxn 12 inphasaopraekrm 13 prawtikhxngsykrn 14 xangxing 15 duephim 16 aehlngkhxmulxunelkhchikalngepncanwnetm aekikhkardaeninkarykkalngdwyelkhchikalngthiepncanwnetm epnkhxkahndthicaepnkhxngphichkhnitmulthanethann elkhchikalngepncanwnetmbwk aekikh niphcn a2 a a eriykwa square hmaythungrupsiehliymcturs duephimthikarykkalngsxng ephraarupsiehliymctursthimidanyawdanla a hnwy miphunthiethakb a2 taranghnwyniphcn a3 a a a eriykwa cube hmaythungthrnglukbask duephimthikarykkalngsam ephraathrnglukbaskthimidanyawdanla a hnwy miprimatrethakb a3 lukbaskhnwyelkhchikalngepntwbngbxkwacanathanmakhunknkitw imichkhunknkikhrng twxyangechn 35 3 3 3 3 3 243 dngnithan 3 prakt 5 khrnginkarkhunephraaelkhchikalngepn 5 kha 243 epn kalng khxng 3 khuxphllphththiidcak 3 ykkalng 5karykkalngthimielkhchikalngepncanwnetmbwk xacniyamidcakkhwamsmphnthewiynekid an 1 a an odyihenguxnikherimtnepn a1 a elkhchikalngepn 0 hrux 1 aekikh enuxngcak a1 hmaythungphlkhunkhxng a ephiyng 1 tw sungthukniyamihmikhaethakb acakkhwamsmphnthewiynekidxikrupaebbhnung an 1 an a emuxsmmtiih n 1 caid a0 1hruxklawxikthanghnungwa kahndih n m aela n m epncanwnetmbwk odythi a imethakbsuny caidkhwamsmphnth a n a m a n m displaystyle frac a n a m a n m dd inkrnithi n aela m mikhaethakn smkardngklawcaklayepn 1 a n a n a n n a 0 displaystyle 1 frac a n a n a n n a 0 dd enuxngcaktwessaelatwswnmikhaethakn dngnncungsamarthniyamkhakhxng a0 1 naipsukdsxngprakar canwnid ykkalng 1 caidtwmnexng canwnid thiimepnsuny ykkalng 0 caid 1 sungepnkartikhwammacakphlkhunwang sahrbkrni 00 duephimthihwkhx 0 ykkalng 0khwamhmaythangkhnitsastrechingkarcd aekikh sahrb n aela m thiepncanwnetmimepnlb canwnetmbwkrwmthngsuny elkhykkalng nm cahmaythungphawaechingkarnb cardinality khxngestkhxng m singxndb m tuple thiidcakestthimismachik n tw hruxphudxiknyhnungkhux epncanwnkhxngkhathimitwxksr m tw cakchudtwxksr n tw 05 0 immihasingxndb cakestwang14 1 1 1 1 1 misisingxndb 1 chud cakestthimismachik 1 tw23 1 1 1 1 1 2 1 2 1 1 2 2 2 1 1 2 1 2 2 2 1 2 2 2 8 misamsingxndb 8 chud cakestthimismachik 2 tw32 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 9 misxngsingxndb khuxndb 9 chud cakestthimismachik 3 tw41 1 2 3 4 4 mihnungsingxndb 4 chud cakestthimismachik 4 tw50 1 misunysingxndb 1 chud cakestthimismachik 5 twduephimetimthihwkhxkarykkalngbnest elkhchikalngepncanwnetmlb aekikh cakniyam canwnid thiimepnsuny emuxykkalngdwy 1 cathaihekidswnklbhruxtwphkphnkarkhun a 1 1 a displaystyle a 1 frac 1 a dd cungsamarthniyamwa a n a n 1 1 a n displaystyle a n a n 1 frac 1 a n dd emux a epncanwnid thiimepnsunyaela n epncanwnetmbwk aetsahrbcanwn 0 ykkalngcanwnlb cathaihekidkrnikarhardwysuny cungimmikarniyamniyamkhxng a n sahrbkha a id thiimichsuny thaihexklksn aman am n epncringbnthukchwngcanwnetmkhxng m kb n thngbwk lb aelasuny cakedimepncringechphaaemux m kb n epncanwnetmimepnlb odyechphaaxyangyingkarichexklksnniodykahndih m n cathaih a n a n a n n a 0 1 displaystyle a n a n a n n a 0 1 dd emux a0 idniyamechnnnaelw epnehtuihnaipsukarniyam a n 1 an dngthiidklawaelwkarykkalngthimielkhchikalngepncanwnetmlb xacsamarthekhiynihxyuinrupkhxngkarharsa cak 1 dwythankid twxyangechn 3 4 1 3 3 3 3 1 81 1 3 4 displaystyle 3 4 1 3 3 3 3 frac 1 81 frac 1 3 4 dd exklksnaelasmbti aekikh exklksnsakhythisudkhxngkarykkalngthisxdkhlxngkbkrnielkhchikalngepncanwnetmkhux a m n a m a n displaystyle a m n a m cdot a n dd exklksnnicungepnphlthitamma a m n a m a n a 0 displaystyle a m n frac a m a n a neq 0 dd aela a m n a m n displaystyle a m n a m cdot n dd exklksnphunthanxikxnhnungkhux a b n a n b n displaystyle a cdot b n a n cdot b n dd inkhnathikarbwkaelakarkhunmismbtikarslbthi echn 2 3 5 3 2 aela 2 3 6 3 2 aetkarykkalngimmismbtikarslbthi echn 23 8 aet 32 9aelaechnediywkn inkhnathikarbwkaelakarkhunmismbtikarepliynhmu echn 2 3 4 9 2 3 4 aela 2 3 4 24 2 3 4 aetkarykkalngimmismbtikarepliynhmu twxyangechn 23 ykkalng 4 caidphllphthepn 84 hruxethakb 4 096 aet 2 ykkalng 34 caidphllphthepn 281 hrux 2 417 851 639 229 258 349 412 352 thahakekhiynelkhykkalngsxnknodyimiswngelb ladbkhxngkarkhanwncathacaktwbnsudmakxn nnkhux a b c a b c a b c displaystyle a b c a b c neq a b c dd kalngkhxng 10 aekikh duephimetimthi sykrnwithyasastr inrabbelkhthansib kalngcanwnetmkhxng 10 samarthekhiynaethniddwyelkh 1 tamdwyhruxnaodyelkh 0 canwnhnung sungphicarnacakekhruxnghmayaelakhnadkhxngelkhchikalng twxyangechn 103 1 000 aela 10 4 0 0001 epntnkarykkalngdwythan 10 thukichinsykrnwithyasastr ephuxichxthibaycanwnkhnadihyhruxelkmak twxyangechn canwn 299 792 458 emtrtxwinathi khwamerwaesnginsuyyakas samarthekhiynidepn 2 99792458 108 m s hruxethakbpraman 2 998 108 m skhaxupsrrkhinhnwyexsixthimiphunthanbnkalngkhxng 10 kthukichxthibayprimanthiihyhruxelkmakidechnknechn khaxupsrrkh kiol hmaythung 103 1 000 dngnn 1 kiolemtrcungethakb 1 000 emtr kalngkhxng 2 aekikh kalngcanwnetmbwkkhxng 2 epnsingthisakhyinwithyakarkhxmphiwetxr ephraawatwaeprthansxngkhnad n bit camikhathiepnipidthnghmd 2n khakalngkhxng 2 kepnsingsakhyinthvsdiest enuxngcakestesthnungthimismachik n tw camiestkalngthimismachik 2n tw estkalngkhuxestkhxngestyxythnghmdcakesttnaebb kalngcanwnetmlbkhxng 2 kichknthwip echn 2 1 1 2 hmaythungkhrung half 2 2 1 4 khuxhnunginsi quarter epntninrabbelkhthansxng kalngcanwnetmkhxng 2 ksamarthekhiynaethniddwyelkh 1 aelwtamdwyhruxnaodyelkh 0 sungphicarnacakekhruxnghmayaelakhnadkhxngelkhchikalng twxyang 23 ekhiyninelkhthansxngwa 10002 epntn kalngkhxng 1 aekikh kalngcanwnetmkhxng 1 thukcanwnmikhaethakb 1 nnkhux 1n 1 kalngkhxng 0 aekikh thaelkhchikalngepncanwnbwk elkhykkalngkhxng 0 caid 0 nnkhux 0n 0 n gt 0thaelkhchikalngepncanwnlb elkhykkalngkhxng 0 caimniyam enuxngcakthaihekidkarhardwysunythaelkhchikalngepnsuny phuaetngtarabangthanidniyamwa 00 1 inkhnathibangthankkhngiwwaimniyam duthihwkhx 0 ykkalng 0 kalngkhxng 1 aekikh tha n epncanwnkhu caid 1 n 1tha n epncanwnkhi caid 1 n 1caksmbtidngklaw kalngkhxng 1 cungmipraoychninkaraesdngladbthimikarslbekhruxnghmay swnkrnithikhlayknsahrbcanwnechingsxn i duthihwkhxkalngkhxngcanwnechingsxn elkhchikalngkhnadihy aekikh limitkhxngladbkhxngkalngkhxngcanwnthimakkwa 1 caluxxk hmaykhwamwacamikhaephimkhuneruxy odyimcakd an emux n tha a gt 1 dd xaceriykidwa a ykkalng n camikhaekhaiklxnnttha n mikhaekhaiklxnnt emux a mikhamakkwa 1sahrbkalngkhxngcanwnthimikhasmburnnxykwa 1 limitkhxngladbcaluekhakha 0 an 0 emux n tha a lt 1 dd aelakalngkhxng 1 caidkha 1 esmx an 1 sahrbthukkhakhxng n tha a 1 dd aethakthan a mikhaekhaikl 1 phrxmkbelkhchikalngmikhaekhaiklxnnt limitkhxngmnimsakhywacatxngethakb 1 twxyangkrnihnungthisakhykhux 1 n 1 n e emux n dd duephiminkalngkhxng ekalngcanwncringkhxngcanwncringbwk aekikhkarykkalngcanwncringbwk dwyelkhchikalngthiimepncanwnetm samarthkhanwnidsxngwithinnkhux elkhchikalngepncanwntrrkya samarthniyamihepnrakthi n aelaelkhchikalngthiimepnsunysamarthniyamidcakkhwamtxenuxng elkhchikalngepncanwncring samarthniyamihepnlxkarithumthrrmchatiodyichfngkchnelkhchikalngexklksnaelasmbtithiaesdngiwdanbnsungniyamiwsahrbelkhchikalngcanwnetm kyngkhngepncringxyusahrbelkhchikalngcanwncringbwkthiimichcanwnetm xyangirktamexklksnni a r s a r s displaystyle a r s a r cdot s dd imsamarthkhyayaenwkhididxyangkhngesnkhngwatha a epncanwncringlb duephimthihwkhxrakthi n thiepnlb khwamphidphladkhxngexklksnniepnmulthankhxngpyhathiekiywkbkalngkhxngcanwnechingsxn sungidxthibayiwaelwthihwkhxkhwamphidphladkhxngexklksnkalngaelalxkarithum rakthi n mukhsakhy aekikh cakbnlnglang x1 8 x1 4 x1 2 x1 x2 x4 x8 dubthkhwamhlkthi rakthi n rakthi n khxngcanwn a khuxcanwn x thisung xn atha a epncanwncringbwkaela n epncanwnetmbwk camikhatxbsahrb xn a thiepncanwncringbwkhnungcanwnxyangaennxn khatxbdngklaweriykwa rakthi n mukhsakhykhxng a principal n th root ekhiynaethniddwysylksn x n displaystyle sqrt n x emux displaystyle sqrt khuxkrnth hruxekhiynxikrupaebbhnungepn a1 n echn 41 2 2 81 3 2emuxphudthungrakthi n khxngcanwncringbwk a mkcahmaythungrakthi n mukhsakhykhxng a dngthiidklawaelw elkhchikalngepncanwntrrkya aekikh kalngkhxngcanwncringbwk a sungmielkhchikalngepncanwntrrkya m n inphcnnxythisud sxdkhlxngkb a m n a m 1 n a m n displaystyle a m n left a m right 1 n sqrt n a m dd emux m epncanwnetmaela n epncanwnetmbwk kalngkhxng e aekikh dubthkhwamhlkthi fngkchnelkhchikalng e hruxkhakhngtwkhxngxxyelxr epnkhakhngtwthangkhnitsastrthisakhykhahnung mikhapraman 2 718 aelaepnthankhxnglxkarithumthrrmchati ichepnaenwthangnaipsukarniyamkarykkalngthimielkhchikalngimepncanwnetm khakhngtwniniyamodylimittxipni sungelkhchikalngmikhaekhaiklxnntinkhnathithanmikhaekhaikl 1 e lim n 1 1 n n displaystyle e lim n rightarrow infty left 1 frac 1 n right n dd fngkchnelkhchikalngsungniyamodylimittxipni e x lim n 1 x n n displaystyle e x lim n rightarrow infty left 1 frac x n right n dd mi x epnelkhchikalngephimekhama aelasxdkhlxngkbexklksnkarykkalng e x y e x e y displaystyle e x y e x cdot e y dd fngkchnelkhchikalngniyamkhunsahrb x thiepncanwnetm canwntrrkya canwncring aelacanwnechingsxnthnghmd nxkcakniksamarthkhyaykarykkalngipbnsingxunthiimichcanwnidechnemthrikscturs xyangirktamexklksnkarykkalngthiykmacaepncringktxemux x aela y samarthslbthiknidethannkarphisucnxyangsnwa e ykkalngcanwnetmbwk k ehmuxnkbfngkchnelkhchikalng ek aesdngiddngni e k lim n 1 1 n n k lim n 1 1 n n k lim n 1 k n k n k lim n k 1 k n k n k lim m 1 k m m e k displaystyle begin aligned e k amp left lim n rightarrow infty left 1 frac 1 n right n right k lim n rightarrow infty left left 1 frac 1 n right n right k amp lim n rightarrow infty left 1 frac k n cdot k right n cdot k lim n cdot k rightarrow infty left 1 frac k n cdot k right n cdot k amp lim m rightarrow infty left 1 frac k m right m e k end aligned dd aesdngihehnwa ex y sxdkhlxngkbexklksnkarykkalngemux x aela y epncanwnetmbwk phlcakkarphisucnyngkhngsxdkhlxngsahrbcanwnthukcanwndwy imephiyngaekhcanwnetmbwk elkhchikalngepncanwncring aekikh enuxngcakcanwncringsamarthpramankhaiddwycanwntrrkya karykkalngdwycanwncring x thukcanwncungsamarthniyamiddwykhwamtxenuxngdwykddngni b x lim r x b r r Q x R displaystyle b x lim r to x b r quad r in mathbb Q x in mathbb R dd limitdngklawsung r thimikhaekhaikl x thuknamaaethnthiechphaacanwntrrkya ryktwxyang tha x 1 732 displaystyle x approx 1 732 dd dngnn 5 x 5 1 732 5 433 250 5 433 250 16 241 displaystyle 5 x approx 5 1 732 5 433 250 sqrt 250 5 433 approx 16 241 dd karykkalngdwycanwncringodypktiksamarththaihsaerciddwylxkarithum aethnthicaichlimitkhxngcanwntrrkyalxkarithumthrrmchati ln x epnfngkchnphkphnkhxngfngkchnelkhchikalng ex sungniyamiwsahrb b gt 0 aelasxdkhlxngkbenguxnikh b e ln b displaystyle b e ln b dd tha bx thukniyamkhunodyyngkhngrksakdtang khxnglxkarithumaelakarykkalng caidwa b x e ln b x e x ln b displaystyle b x e ln b x e x cdot ln b dd sahrbcanwncring x aetlacanwnsingnisamarthichepnniyamthangeluxkkhxngkarykkalngdwycanwncring bx aelasxdkhlxngkbwithikarichelkhchikalngepncanwntrrkyakbkhwamtxenuxng niyamdngklawepnwithikarpktisamyinbribthkhxngcanwnechingsxnxikdwyrakthi n thiepnlb aekikhkalngkhxngcanwncringbwkcamikhaepncanwncringbwkesmx xyangirktam khatxbkhxngsmkar x2 4 xacepn 2 hrux 2 kid khamukhsakhykhxng 41 2 khux 2 aet 2 kepnrakthisxngthithuktxngxikkhahnungdwy hakniyamkhxngkarykkalngkhxngcanwncringkhyayaenwkhidihmiphllphthepncanwnlbid phlkhxngkarykkalngxaclklntha n epncanwnkhu caksmkar xn a tha a epnbwkcamisxngkhatxb idaekrakthi n thiepnbwkaelalb aettha a epnlbcaimmikhatxbepncanwncringtha n epncanwnkhi caksmkar xn a camikhatxbthiepncanwncringhnungcanwn tha a epnbwkkcaidkhatxbnnepnbwk aelatha a epnlbkcaidkhatxbnnepnlbsahrbelkhchikalngthiepncanwntrrkya m n inphcnnxythisud tha m epncanwnkhu phllphthcaepnbwk inkrnithi a epnlb tha m kb n epncanwnkhi phllphthcaepnlb inkrnithi a epnbwkaela n epncanwnkhu phllphthxacepnbwkhruxlbxyangidxyanghnung twxyangechn 27 1 3 3 27 2 3 9 43 2 misxngkhatxbkhux 8 kb 8 aelaenuxngcakimmicanwncring x thithaih x2 1 dngnnniyamkhxng am n inkrnithi a epnlbaela n epncanwnkhu cungcaepntxngichhnwycintphaph i ekhamaekiywkhxngimwawithikarichlxkarithumhruxelkhchikalngepncanwntrrkya kimsamarthniyam ar ihepncanwncringid sahrb a thiepncanwncringlbaelathukchwngkhakhxngcanwncring r aelathanxngediywkn er ihphllphthepnbwksahrbthukchwngkhakhxngcanwncring r dngnn ln a sungepnfngkchnphkphncungimxacniyamihepncanwncringidsahrb a 0 inthangtrngkham kalngechingsxnkhxngcanwnlb a samarthniyamiddwylxkarithumechingsxnkhxng a withikarichelkhchikalngepncanwntrrkyaimsamarthichidkbkha a thiepnlb ephraawithikarnikhunxyukbkhwamtxenuxng hmaykhwamwa fngkchn f r ar epnkarkhyaycanwntrrkyaipepncanwncringxyangtxenuxngephiynghnungediywemux a gt 0 aetinkrni a lt 0 fngkchn f imtxenuxngbnestkhxngcanwncring r thikahndiwaetlakhatwxyang smmtiih a 1 rakthi n khxng 1 ethakb 1 sahrbcanwnkhibwk n thukcanwn aettha n epncanwnkhubwk 1 m n 1 emux m epncanwnkhi 1 m n 1 emux m epncanwnkhu dngnnestkhxngcanwntrrkya q thithaih 1 q 1 epnesthnaaenn dense set incanwntrrkya echnediywkbestkhxng q thithaih 1 q 1 singnihmaykhwamwafngkchn 1 q imtxenuxngthicanwntrrkya q id thikahndiwaetlakhaemuxichexklksnkarykkalngkbrakthi n thiepnlb caepntxngramdrawngepnphiess twxyangechn 27 27 2 3 3 2 27 2 3 3 2 93 2 27 sungphidxyangchdecn pyhaxyuthikarichrakthisxngthiepnbwk aethnthicaichrakthisxngthiepnlbinkhntxnsudthay aetodythwippyhathikhlayknnimkekidkhunkbcanwnechingsxn dngthiidxthibayiwinhwkhxkhwamphidphladkhxngexklksnkalngaelalxkarithumkalngcanwnechingsxnkhxngcanwncringbwk aekikhkalngcanwncintphaphkhxng e aekikh fngkchnelkhchikalng ez samarthniyamodylimitkhxng 1 z N N emux N mikhaekhaiklxnnt aelaemuxepnechnnn eip kcaepnlimitkhxng 1 ip N N inphaphekhluxnihwni N mikhaephimkhuncak 1 thung 100 karkhanwn 1 ip N N aesdngepnphlrwmthiekidcakkarkhunsa N twinranabechingsxn sungcudsudthayepnkhathiaethcringkhxng 1 ip N N aesdngihehnwaemux N makkhun 1 ip N N camikhaekhaikl 1 dngnn eip 1 sungepnthiruckinchuxexklksnkhxngxxyelxr dubthkhwamhlkthi fngkchnelkhchikalng karthakhwamekhaic eix sahrbcanwncring x txngthrabthungkaraeplkhwamhmayechingerkhakhnitkhxngkardaeninkarbncanwnechingsxn aelaniyamkalngkhxng e dngthiklawiwaelwkhangtn phicarnarupsamehliymmumchak 0 1 1 ix n sahrbcanwn n thimikhnadihymak rupsamehliymnncamilksnaekhaiklesketxrkhxngrupwngklmmakyingkhun odymimumthicudsunyklangethakb x n erediyn aelarupsamehliymxun 0 1 ix n k 1 ix n k 1 kepnrupsamehliymkhlayrwmknsahrb k thukkha ephraachann sahrbcanwn n khnadihy cudthiepnkhxbekhtkhxng 1 ix n n kkhuxcudthixyubnrupwngklmhnunghnwy sungmumthiwdcakaekncanwncringbwkethakb x erediyn phikdechingkhwkhxngcudnikhux r 8 1 x aelaphikdkharthiesiynkhux cos x sin x dngnninthaythisud eix cos x i sin x eriykwasutrkhxngxxyelxr sungechuxmoyngphichkhnitkbtrioknmitidwykhwamhmaykhxngcanwnechingsxnkhatxbkhxngsmkar ez 1 khuxphhukhuncanwnetmkhxng 2pi z e z 1 2 k p i k Z displaystyle z e z 1 2k pi i k in mathbb Z dd inkrnithwip thakahndih eb a dngnnkhatxbkhxngsmkar ez a haidodykarbwk b ekhakbphhukhuncanwnetmkhxng 2pi z e z a b 2 k p i k Z displaystyle z e z a b 2k pi i k in mathbb Z dd dngnnfngkchnelkhchikalngechingsxnepnfngkchnepnkhab periodic function sungmikhabethakb 2pinxkcaknikyngmisutrxun xikechn eip 1 ex iy ex cos y i sin y fngkchntrioknmiti aekikh dubthkhwamhlkthi sutrkhxngxxyelxr cakkaraeplngsutrkhxngxxyelxr fngkchntrioknmiti okhisnaelaisnthukaeplngepn cos z e i z e i z 2 sin z e i z e i z 2 i displaystyle cos z frac e i cdot z e i cdot z 2 qquad sin z frac e i cdot z e i cdot z 2 cdot i dd okhisnaelaisnthukniyamkhunodythangerkhakhnitkxnmikarpradisthcanwnechingsxninprawtisastr sutrthngsxngdanbnepnkarldrupsutrthisbsxnkhxngfngkchntrioknmitikhxngphlbwkepnsutrkarykkalngxyangngaywa e i x y e i x e i y displaystyle e i cdot x y e i cdot x cdot e i cdot y dd karichkarykkalngthimielkhchikalngepncanwnechingsxn xacchwyldruppyhaintrioknmitiipepnphichkhnitid kalngcanwnechingsxnkhxng e aekikh karykkalng z ex i y samarthkhanwnidcak ex ei y twprakxbswncring ex khuxkhasmburnkhxng z aelatwprakxbswncintphaph ei y rabuthisthangkhxng z kalngcanwnechingsxnkhxngcanwncringbwk aekikh kahndih a epncanwncringbwk aela z epncanwnechingsxnid karykkalng az niyamody ez ln a emux x ln a epnkhatxbcanwncringephiynghnungediywkhxngsmkar ex a dngnnwithikarediywknthiichkbelkhchikalngcanwncringkyngkhngichidkbelkhchikalngcanwnechingsxn twxyangechn 2i ei ln 2 cos ln 2 i sin ln 2 0 76924 0 63896i ei 0 54030 0 84147i 10i 0 66820 0 74398i e2p i 535 49i 1 dd kalngkhxngcanwnechingsxn aekikhkalngcanwnetmkhxngcanwnechingsxnthiimepnsunyniyamodykarkhunhruxkarharsa echnediywkbthiidklawaelw tha i khuxhnwycintphaphaela n khuxcanwnetmaelw in camikhaethakb 1 i 1 hrux i khunxyukbkha n wasmphakhkb 0 1 2 hrux 3 mxduol 4 tamladb hruxxiknyhnungkhux n hardwy 4 aelwehluxessethaid dwysaehtuni kalngkhxng i cungmipraoychninkarekhiynaethnladbthimikhabaebngepn 4 chwngkalngcanwnechingsxnkhxngcanwncringbwkidniyamphanthang ex tamthixthibayiwinhwkhxkalngcanwnechingsxnkhxngcanwncringbwk sungepnfngkchntxenuxngkarkhyayaenwkhidkhxngfngkchnehlaniipepnkrnithwipkhux kalngthiimepncanwnetmkhxngcanwnechingsxnthiimichcanwnetmbwk thaihekidkhwamyungyak nnkhuxtxngniyamfngkchnimtxenuxnghruxfngkchnhlaykhaxyangidxyanghnung aetimwathangeluxkidkimsamarthniyamihsxdkhlxngephiyngphxthnghmdidkalngcanwntrrkyakhxngcanwnechingsxntxngepnkhatxbkhxngsmkarechingphichkhnitsmkarhnung dngnnmncungmikhatxbthiepnipidcanwncakdhnungesmx twxyangechn w z1 2 txngepnkhatxbkhxngsmkar w2 z aetemux w epnkhatxbaelw w kepnkhatxbdwyechnknephraawa 1 2 1 khatxbephiynghnungediywthithukeluxkodykhxnkhangprascakehtuphleriykwakhamukhsakhy principal value samartheluxkodyichkdthwipsungichkbkalngthiimichcanwntrrkyadwykalngaelalxkarithumechingsxnodythrrmchatithuxwaepnfngkchnkhaediywbnphiwrimnn Riemann surface rupaebbkhaediywthukniyamkhunodykareluxkphiwkhunmaxnhnung khakhxngmnimmikhwamtxenuxngtamaenwswntdking branch cut kareluxkhnungkhatxbcakhlaykhatxbepnkhamukhsakhykyngkhngidfngkchnthiimmikhwamtxenuxng aelakdtang thiichcdkarkbkarykkalngtampktixacnaipsukhwamphidphladidkalngcanwnxtrrkyakhxngcanwnechingsxnmikhatxbthiepnipidimcakd ephraathrrmchatikhxnglxkarithumechingsxnsamarthmikhatxbidhlaykha khamukhsakhykhuxkhakhahnungthithukeluxkdwykdxyanghnungthamklangkhunsmbtixun thithaihaenicwa kalngkhxngcanwnechingsxnthimiswncringepnbwkaelaswncintphaphepnsuny camikhaehmuxnkbkalngkhxngcanwncringthiekiywkhxngkarykkalngcanwncringdwycanwnechingsxnepnkardaeninkarthiaetktangcakkarykkalngcanwnechingsxnthiekiywkhxng xyangirktaminkrnikhxngcanwncringbwk khamukhsakhynnehmuxnknkalngkhxngcanwncringlbnnimidthukniyamesmxip aelaimtxenuxngaemwacaidniyamaelw dngnnemuxphbkbcanwnechingsxn khwrichkardaeninkarsahrbcanwnechingsxnaethn kalngcanwnechingsxnkhxngcanwnechingsxn aekikh sahrbcanwnechingsxn a aela b sung a 0 sykrn ab ekidkhwamkakwminkhatxbehmuxnkb log aephuxhakhakhxng ab khntxnaerkcatxngeluxklxkarithumkhxng a khunmakhahnung thangeluxknnxacepn Log a khuxkhamukhsakhykhxng log a odypriyayhakmiidkahndenguxnikhxunephim hruxxacepnkhahnungcakkingxunkhxng log z thikahndtaytw dngnncungsamarthniyamodyichfngkchnlxkarithumechingsxndngni a b e b log a displaystyle a b e b log a dd ephraaniyamnisxdkhlxngkbniyamthiihiwkxnhnani inkrnithi a epncanwncringbwkaelakhamukhsakhykhxng log a sungepncanwncring idthukeluxktha b epncanwnetm dngnnkhakhxng ab caimkhunxyukbtweluxkkhxng log a ephraasxdkhlxngkbniyamkarykkalngthimielkhchikalngepncanwnetmtha b epncanwntrrkya m n inphcnnxythisudodythi n gt 0 dngnncamitweluxkkhxng log a epncanwnimcakdihkhathiaetktangkn n canwnsahrb ab sungkhaehlanikhuxcanwnechingsxn z thiepnkhatxbkhxngsmkar zn amtha b epncanwnxtrrkya dngnncamitweluxkkhxng log a epncanwnimcakd naipsukhakhxng ab thiaetktangknepncanwnimcakdechnknkarkhanwnkalngcanwnechingsxnsamarththaihngaykhunodykaraeplngthan a epnrupaebbechingkhw dngthixthibayiwdanlang karsrangthikhlayksamarthichkhwxethxreniyn quaternion iddwy rakechingsxnkhxng 1 rakpthmthan aekikh rakthisamkhxng 1 thngsamrak dubthkhwamhlkthi rakkhxng 1 canwnechingsxn a thithaih an 1 sahrbcanwnetmbwk n eriykwa rakthi n khxng 1 nth root of unity hruxeriyksn wa rakkhxng 1 root of unity rakehlanimi n khatxbaelawangtwkhlaycudyxdkhxngrup n ehliymprkti bnrupwngklmhnunghnwybnranabechingsxn sungmicudyxdcudhnungxyuthicanwncring 1tha zn 1 aet zk 1 sahrbcanwnthrrmchati k tamenguxnikh 0 lt k lt n aelw z caeriykwa rakpthmthanthi n primitive nth root of unity twxyangechn 1 epnrakpthmthanthisxngephiyngtwediyw rakpthmthanthisimisxngtwidaek i aela i imnbrakpthmthanthisxng epntncanwn e2pi 1 n khuxrakpthmthanthi n thimixarkiwemntepnbwknxythisud bangkhrngxaceriykwa rakpthmthanthi n mukhsakhy thungaemwakarichkhanicaimaephrhlayaelaxacthaihsbsnkb khamukhsakhykhxngrakthi n khxng 1 sunghmaythungkha 1 1 swnrakkhxng 1 canwnxun khanwnidcak e 2 p i n k e 2 p i k n displaystyle left e 2 pi i n right k e 2 pi ik n dd sahrb 2 k n rakkhxngcanwnechingsxnodythwip aekikh aemwalxkarithumechingsxnmikhathiepnipidmakmayimcakd aetkmikhaepncanwncakdethannthiepnkhatxbkhxng az odyechphaainkrnithi z 1 n aela n epncanwnetmbwk khaehlanikhuxrakthi n khxng a sungepnkhatxbkhxngsmkar xn ainthangkhnitsastr eraxacthaihkarkhanwnsadwkkhunodyniyam a1 n ihepnkhamukhsakhykhxngrak tha a epncanwncringbwk casamartheluxkkhatxbepncanwncringbwkepnkhamukhsakhyidxyangngayday sahrbcanwnechingsxnodythwip rakthi n thimixarkiwemntnxythisudmkcathukeluxkepnkhamukhsakhykhxngrak echnediywkbkhamukhsakhykhxngrakkhxng 1estkhxngrakthi n khxngcanwnechingsxn a haidcakkarkhunkhamukhsakhykhxng a1 n dwyrakthi n khxng 1 aetlacanwn twxyangechn rakthisikhxng 16 idaek 2 2 2i aela 2i ephraawakhamukhsakhykhxngrakthisikhxng 16 khux 2 aelarakthisikhxng 1 idaek 1 1 i aela i karkhanwnkalngcanwnechingsxn aekikh karkhanwnkalngcanwnechingsxnsamarththaidngaykhunodyekhiynepnkarykkalnginrupaebbechingkhw canwnechingsxn z thukcanwnsamarthekhiynihxyuinrupaebbechingkhwdngni z r e i 8 e ln r i 8 displaystyle z re i theta e ln r i theta dd emux r khuxcanwncringimepnlbaela 8 khuxxarkiwemntkhxng z sungepncanwncring rupaebbechingkhwmikaraeplkhwamhmayechingerkhakhnitwa thacanwnechingsxn u iv aethniddwycud u v bnranabechingsxnodyrabbphikdkharthiesiyn dngnn r 8 kkhuxcudediywkninrabbphikdechingkhw nnhmaykhwamwa r khux rsmi thimikhatam r2 u2 v2 aela 8 khux mum thimikhatam 8 atan2 v u fngkchn atan2 macakfngkchn arctan thimienguxnikhephimetim mumechingkhw 8 mikhwamkakwmenuxngcak 8 samarthbwkdwyphhukhunid khxng 2p aelwimthaihcudepliyntaaehnngipcakedim tweluxkaetlakhakhxng 8 odythwipcaihphlkarykkalngthiaetktangkn swntdkingswnhnungsamarthnamaichephuxeluxkkhathiecaacng khamukhsakhy swntdkingthisamythisud sxdkhlxngkb 8 thithukeluxkinchwngkha p p sahrbcanwnechingsxnthimiswncringepnbwkaelaswncintphaphepnsunysungichkhamukhsakhyechnnn caihphllphthediywkbkarichcanwncringthiekiywkhxngephuxthicakhanwnkalngechingsxn ab khnaerkekhiyn a inrupaebbechingkhw a r e i 8 displaystyle a re i theta dd dngnn log a log r i 8 displaystyle log a log r i theta dd aelacaid a b e b log a e b log r i 8 displaystyle a b e b log a e b log r i theta dd tha b thukaebngxxkepn c di dngnnsutrsahrb ab cungekhiynihchdecnyingkhunidepn r c e d 8 e i d log r c 8 r c e d 8 cos d log r c 8 i sin d log r c 8 displaystyle left r c e d theta right e i d log r c theta left r c e d theta right left cos d log r c theta i sin d log r c theta right dd sutrsudthaynichwykhanwnkarykkalngcanwnechingsxnidodyngay cakkaraebngthankbelkhchikalngxxkepnrupaebbechingkhwkbrupaebbkharthiesiyntamladb sutrdngklawaesdngphllphththngrupaebbechingkhwaelarupaebbkharthiesiyn phanthangexklksnkhxngxxyelxr twxyangtxipnicaichkhamukhsakhykhuxswntdkingthithaih 8 xyuinchwngkha p p kahndocthy i i khnaerkekhiyn i inrupaebbechingkhwaelarupaebbkharthiesiyndngni i 1 e i p 2 displaystyle i 1 cdot e i pi 2 i 0 1 i displaystyle i 0 1i dd cakkaraeplngdanbn caidwa r 1 8 p 2 c 0 aela d 1 dngnn i i 1 0 e p 2 e i 1 log 1 0 p 2 e p 2 0 2079 displaystyle i i left 1 0 e pi 2 right e i 1 cdot log 1 0 cdot pi 2 e pi 2 approx 0 2079 dd echnediywknsahrbocthy 2 3 4i harupaebbechingkhwkhxng 2 idepn 2 2 e i p displaystyle 2 2e i pi dd aelwichsutrdanbnkhanwncnidkhatxb 2 3 4 i 2 3 e 4 p e i 4 log 2 3 p 2 602 1 006 i 10 5 displaystyle 2 3 4i left 2 3 e 4 pi right e i 4 log 2 3 pi approx 2 602 1 006i cdot 10 5 dd khakhxngkarykkalngcanwnechingsxnkhunxyukbkingthieluxk twxyangechn thaeluxkrupaebbechingkhwkhxng i 1ei 5p 2 ephuxkhanwn i i khatxbcaklayepn e 5p 2 aetkhamukhsakhykhxng i i khux e p 2 dngtwxyangthiaesdngiwaelw estkhxngkhathnghmdthiepnipidsahrb i i samarthhaidcakenguxnikh 2 i 1 e i p 2 i 2 p k displaystyle i 1 cdot e i pi 2 i2 pi k i i e i i p 2 i 2 p k e p 2 2 p k displaystyle i i e i left i pi 2 i2 pi k right e left pi 2 2 pi k right dd emux k epncanwnetmcanwnhnung dngnnkhatxbthiepnipidkhxng i i cungmicanwnimcakdsahrbkha k aetlakha khatxbthnghmdmiswncintphaphepnsuny dngnneracungxacklawidwa i i mikhaepncanwncringaelamiepnxnnt khwamphidphladkhxngexklksnkalngaelalxkarithum aekikh exklksnkarykkalngaelalxkarithumbangxyangthiichkbcanwncringbwk ichnganimidkbcanwnechingsxn imwakarykkalngechingsxnaelalxkarithumechingsxnthukniyamkhunxyangir yktwxyang exklksn log ab b log a epncringemux a epncanwncringbwkaela b epncanwncring aetsahrbkingmukhsakhy principal branch khxnglxkarithumechingsxncaidwa i p log 1 log i 2 2 log i 2 i p 2 i p displaystyle i pi log 1 log i 2 neq 2 log i 2 i pi 2 i pi imwakingidkhxnglxkarithumcathukeluxk khwamphidphladdngklawkyngkhngmixyu aenwthangthidithisud emuxtxngkarichphllphthethann khuxkarkahndih log a b b log a mod 2 p i displaystyle log a b equiv b cdot log a pmod 2 pi i exklksnnikimepncringhakphicarnawalxkarithumepnfngkchnhlaykha khathiepnipidkhxng log ab camikha b log a ehlannepnephiyngestyxyesthnung khathiepnipidthngsxngkhangkhxngexklksnsungaesdngdwy Log a aethnkhamukhsakhykhxng log a aela m kb n epncanwnetmid caidwa log a b b Log a b 2 p i n 2 p i m displaystyle left log a b right left b cdot operatorname Log a b cdot 2 pi in 2 pi im right b log a b Log a b 2 p i n displaystyle left b cdot log a right left b cdot operatorname Log a b cdot 2 pi in right exklksn ab c acbc aela a b c ac bc ichidechphaaemux a kb b epncanwncringbwkaela c epncanwncring aetkarkhanwnodyichkingmukhsakhyaesdngihehnwa 1 1 1 1 2 1 1 2 1 1 2 1 displaystyle 1 1 times 1 1 2 not 1 1 2 1 1 2 1 aela i 1 1 2 1 1 1 2 1 1 2 1 1 2 1 i i displaystyle i 1 1 2 left frac 1 1 right 1 2 not frac 1 1 2 1 1 2 frac 1 i i inthangtrngkham emux c epncanwnetm exklksnehlanicaichidkbcanwnechingsxnthiimepnsunythukcanwn thakarykkalngthukphicarnawaepnfngkchnhlaykha dngnnkhathiepnipidkhxng 1 1 1 2 khux 1 1 exklksnyngkhngepncring aetkarklawwa 1 1 1 1 2 nnphidexklksn ea b eab epncringsahrbcanwncring a aela b aetkarsmmtiihexklksnniepncringsahrbcanwnechingsxnnaipsuptithrrsntxipni sungkhnphbodyothms khlawesn Thomas Clausen emux kh s 1827 3 sahrbcanwnetm n id caidwa e 1 2 p i n e 1 e 2 p i n e 1 e displaystyle e 1 2 pi in e 1 e 2 pi in e cdot 1 e e 1 2 p i n 1 2 p i n e displaystyle left e 1 2 pi in right 1 2 pi in e e 1 4 p i n 4 p 2 n 2 e displaystyle e 1 4 pi in 4 pi 2 n 2 e e 1 e 4 p i n e 4 p 2 n 2 e displaystyle e 1 e 4 pi in e 4 pi 2 n 2 e e 4 p 2 n 2 1 displaystyle e 4 pi 2 n 2 1 aetsingniepnethcemuxcanwnetm n imethakbsuny karihehtuphldngklawmipyhaekidkhunhlaypyha khwamphidphladhlkkhuxkarepliynxndbkhxngkarykkalng cakbrrthdthisxngipyngbrrthdthisam idepliynkhamukhsakhythicathukeluxkich cakmummxngkhxngfngkchnhlaykha khwamphidphladxyangaerkekidkhunkxnhnannsungehnidodypriyaycakbrrthdaerkaetimednchd khux e epncanwncringinkhnathiphllphthkhxng e1 2pin epncanwnechingsxn sungkhwrekhiynaethndwy e 0i makkwa karaethnthiepncanwnechingsxnsahrbcanwncringinbrrthdthisxng thaihkarykkalngmikhatxbthiepnipidhlaykha karepliynxndbkhxngkarykkalngcakbrrthdthisxngipyngbrrthdthisam cungsngphltxkhathiepnipidkhxngphllphthwamiepncanwnethaiddwy0 ykkalng 0 aekikh krafkhxng z abs x y sungesnokhngsiaedngmilimittangknemux x y mikhaekhaikl 0 0 inkhnathiesnokhngsiekhiywthukesnmilimitethakb 1 phuekhiyntaraswnmakehnphxngkbpraoykhthiekiywkhxngkb 00 inraykarsxngraykardanlang raykaraerkimekiywkbkhwamtxenuxng swnraykarthdipekiywkbkhwamtxenuxng aet tdsinic imehmuxnknephuxthicaniyam 00 hruximniyam duraylaexiydthimummxngthiaetktanginxdit inkarkahndthiimekiywkhxngkbkhwamtxenuxngkhxngelkhchikalng kartikhwamwa 00 khux 1 chwyihsutrtang ngaykhunaelaimcaepntxngnaexathvsdibthxunmaxthibayepnkrniphiess twxyangechn karphicarna a0 ihepnphlkhunwangsungmikhaepn 1 aemwa a caethakb 0 kartikhwamthangkhnitsastrechingkarcdthuxwa 00 khuxcanwnkhxngsunysingxndbkhxngsmachikcakestwang dngnncungmisunysingxndbhnungtw inthangediywkn kartikhwamthangthvsdiestkhxng 00 khuxcanwnfngkchncakestwangipyngestwang sungmiephiynghnungfngkchnethannnnkhux fngkchnwang empty function 4 sykrn a n x n displaystyle textstyle sum a n x n sahrbphhunamaelaxnukrmkalngkhunxyukbkarniyamih 00 1 exklksnxyangechn 1 1 x n 0 x n displaystyle frac 1 1 x sum n 0 infty x n aela e x n 0 x n n displaystyle e x sum n 0 infty frac x n n aelathvsdibththwinam 1 x n k 0 n n k x k displaystyle 1 x n sum k 0 n binom n k x k caichnganimidemux x 0 thaimkahndih 00 1 5 inaekhlkhulsechingxnuphnth kdkarykkalng d d x x n n x n 1 displaystyle textstyle frac d dx x n nx n 1 caichimidsahrb n 1 thi x 0 thaimkahndih 00 1inthangtrngkham emux 00 ekidcaklimitinrupaebb lim x y 0 0 x y displaystyle lim x y rightarrow 0 0 x y sungepnkarkahndthiekiywkhxngkbkhwamtxenuxng cathukphicarnaihepnrupaebbyngimkahnd indeterminate form limitthiekiywkhxngkbkardaeninkarechingphichkhnit mkcasamarthpraeminkhaiddwykaraethnthiniphcnyxydwylimitkhxngmn thaniphcnthiepnphllphthimsamarthkahndlimitdngedimid niphcnnncaeriykwaepnrupaebbyngimkahnd 6 hak f t aela g t sungepnfngkchnthiihphllphthepncanwncring mikhaekhaikl 0 thngkhu emux t mikhaekhaiklcanwncringcanwnhnunghrux odythi f t gt 0 aelwfngkchn f t g t imcaepntxngmikhaekhaikl 1 esmxip limitkhxng f t g t xacihphllphthepncanwncringid thiimepnlbhrux hruxxacimniyam khunxyukb f aela g waniyamiwxyangir twxyangechn fngkchndanlangnixyuinrupaebb f t g t sung f t g t 0 emux t 0 aetlimitkhxngmnmikhatangkndngni lim t 0 t t 1 lim t 0 e 1 t 2 t 0 lim t 0 e 1 t 2 t lim t 0 e 1 t a t e a displaystyle lim t to 0 t t 1 quad lim t to 0 e 1 t 2 t 0 quad lim t to 0 e 1 t 2 t infty quad lim t to 0 e 1 t at e a dngnn 00 cungepnrupaebbyngimkahndchnidhnung phvtikrrmniaesdngihehnwafngkchnsxngtwaepr xy aemwacatxenuxngbnest x y x gt 0 imsamarthkhyayepnfngkchntxenuxngbnestid thirwm 0 0 xyudwy imwa 00 cathukniyamkhunxyangir 7 xyangirktam phayitenguxnikhechphaaechnemux f kb g epnfngkchnwiekhraah analytic function thngkhuaela f imepnlb limitthangdankhwacaethakb 1 esmx 8 9 10 inodemnechingsxn fngkchn zw thukniyamkhunsahrb z imethakbsuny odyeluxkkinghnungkhxng log z aelakahndih zw ew log z aetimmikingkhxng log z thiniyamiwsahrb z ethakbsuny cungthingiwepnimniyam 11 mummxngthiaetktanginxdit aekikh phuaetngtarahlaykhntikhwamsthankarnkhangtninwithithiaetktangknechn klumhnungihehtuphlwakhathidithisudkhxng 00 khunxyukbbribth aelakarniyamkhrnghnungephuxichkbthukkrniepntnipthaihekidpyha 12 ebnsn Benson klawwa thangeluxkwacaniyam 00 hruximniyam khunxyukbkhwamsadwk imichkhwamthuktxng 13 xikklumhnungaeyngwa 00 khwrcaethakb 1 khnuthbxkwacanwnni txngepn 1 aemekhakidklawtxipxikwa okhchikmiehtuphlthidiinkarphicarna 00 ihepn rupaebblimit thiimniyam aelaklawxikwa inkhwamrusukthiaerngklaxyangmak khakhxng 00 idthukniyamiwnxykwakhakhxng 0 0 epntnesiyxik 14 karthkethiyngekidkhuninchwngtnkhriststwrrsthi 19 epnxyangnxy inewlannnkkhnitsastrswnmakyxmrbwa 00 1 cnkrathngokhchi Cauchy idaesdngraykar 00 phrxmkbniphcnxun echn 0 0 intarangrupaebbthiimniyam 15 inchwngkhristthswrrs 1830 libri Libri idephyaephrekiywkbkarihehtuphlthithaihimnaechuxwa 00 1 16 17 klawkhux karxangwa lim t 0 f t g t 1 displaystyle lim t to 0 f t g t 1 emuxidktamthi lim t 0 f t lim t 0 g t 0 displaystyle lim t to 0 f t lim t to 0 g t 0 epnkarsnnisthanthiphid aelaemxbixus Mobius kehndwykbekha 18 phuxxkkhwamehnkhnhnungthiichchuxwa S idihtwxyangkhxngkarotaeyng e 1 t t twxyangnithaihkarthkethiyngsngbengiyblngchwrayaewlahnung phlsrupthipraktkhxngeruxngnikhux 00 imkhwrniyam 14 karptibtiinkhxmphiwetxr aekikh matrthancanwncudlxytw IEEE aekikh matrthancanwncudlxytw IEEE 754 2008 ichinkarxxkaebbilbrariekiywkbcanwncudlxytwepnswnmak matrthandngklawidaenanafngkchnthiaetktangknsahrbkhanwnkarykkalngtxipni 19 pow ihkha 00 epn 1 fngkchnniepnrunthiniyamiwekathisud thakalngepncanwnetmxyangaenchd phllphthcaehmuxnkb pown hakimepnechnnnphllphthcaehmuxnkb powr ykewnkrniphiessbangkrni pown ihkha 00 epn 1 kalngtxngepncanwnetmxyangaenchd fngkchnniidniyamsahrbthanthiepnlbdwyechn pown 3 5 ihphllphth 243 powr ihkha 00 epn NaN imichcanwn khuximniyam fngkchnnikyngihphllphthepn NaN inkrnithanmikhanxykwasunyechn powr 3 2 khakhxngmnniyamkhuncak e elkhchikalng log than phasaopraekrm aekikh phasaopraekrmswnihythimifngkchnkarykkalngthuknamathaihekidphlodyichfngkchn pow khxng IEEE dngnnmncungihkha 00 epn 1 matrthanphasasiaelaphasasiphlsphlsinewlatxmaidxthibaysingniwaepnphvtikrrmechingbrrthdthan normative 20 matrthanphasacawakprakasihichphvtikrrmni 21 System Math Pow indxtentefrmewirk kihkha 00 epn 1 echnkn 22 sxftaewrkhnitsastr aekikh esc ldrup a0 epn 1 tha a imkahndenguxnikh 23 imldrup 0a aelaihkha 00 epn 1 emephil ldrup a0 epn 1 aela 0a epn 0 tha a imkahndenguxnikh aetrupaebbxyanghlngsamarthichnganidechphaaemuxkahndkha a gt 0 aelaihkha 00 epn 1 aemksima kldrup a0 epn 1 aela 0a epn 0 dwyechnkn tha a imkahndenguxnikh aetcaekidkhxphidphladsahrb 00 aemethxaemtikaaelawulaefrmaexlfa ldrup a0 epn 1 tha a imkahndenguxnikh 24 aemethxaemtikaimldrup 0a inkhnathiwulaefrmaexlfaihphllphthsxngxyangkhux 0 aelarupaebbyngimkahnd 25 thngaemethxaemtikaaelawulaefrmaexlfaihkha 00 epnrupaebbyngimkahnd 26 hmayehtu ldrup hmaythung ihkhaphllphthodyxtonmti aemcaimrabukhakhxng alimitkhxngkarykkalng aekikhhwkhx 0 ykkalng 0 idaesdngtwxyanglimitkhxngrupaebbyngimkahnd 00 iwcanwnhnung twxyangehlanimilimittang aetmikhaaetktangkn aesdngihehnwafngkchnsxngtwaepr xy immilimitthicud 0 0 cungxacekidkhathamwafngkchnnimilimitthicudihnbangephuxkhwamthuktxngyingkhun phicarnafngkchn f x y xy thiniyambnodemn D x y R2 x gt 0 dngnn D xacthukmxngwaepnestyxykhxng R 2 nnkhuxestkhxngkhuxndb x y thnghmd sung x y xyubnesncanwncringkhyay R odysrangkhuncakthxphxolyiphlkhun sungcarwmcudtang thithaihfngkchn f milimitodykhxethccring f camilimitthicudsasm accumulation point tang khxng D ykewn 0 0 0 1 aela 1 27 dwyehtunieracungsamarthniyamkarykkalng xy dwykhwamtxenuxngemuxidktamthi 0 x y odyykewn 00 0 1 aela 1 sungehluxepnrupaebbyngimkahndphayitkarniyamodykhwamtxenuxngni caid a aela a 0 emux 1 lt a a 0 aela a emux 0 a lt 1 0b 0 aela b emux 0 lt b 0b aela b 0 emux b lt 0kalngehlaniidmacakkarhalimitkhxng xy sahrbkha x thiepnbwk withikarniimxnuyatihniyam xy emux x lt 0 ephraakhuxndb x y tang thi x lt 0 imichcudsasmkhxng Dinxikthanghnung emux n epncanwnetm karykkalng xn mikhwamhmayxyuaelwsahrb x thukkhasungrwmthngkhalbdwy singnixacthaihkarniyam 0n thiidmakhangtnsahrbkha n thiepnlbekidpyhaemux n epncanwnkhi enuxngcakkrnini tn emux t mikhaekhaikl 0 thangbwk aetimichthanglbkarkhanwnkalngcanwnetmxyangmiprasiththiphaph aekikhwithikarkhanwnthingaythisudkhxng an khuxkarkhunepncanwn n 1 khrng aetmnkxackhanwnidxyangmiprasiththiphaphmakkhundngtwxyangtxipni echnocthyihkhanwn 2100 aeterathrabwa 100 64 32 4 eraxackhanwntamladbdngni 22 4 22 2 24 16 24 2 28 256 28 2 216 65 536 216 2 232 4 294 967 296 232 2 264 18 446 744 073 709 551 616 264 232 24 2100 1 267 650 600 228 229 401 496 703 205 376khntxnehlanicaepntxngichkarkhunephiyngaekh 8 khrng phlkhuninkhntxnsudthayichkarkhun 2 khrng aethnthicatxngkhunthung 99 khrngcanwnkhrngkhxngkarkhunthicaepnsahrbkhanwn an odythwipsamarthldihehlux 8 log n odyichkarykkalngdwykalngsxng exponentiation by squaring hruxodynythwipkhunxikkhux karykkalngdwylukoskarbwk addition chain exponentiation karhaladbkhxngkarkhun nxythisud khxng an lukoskarbwksnthisudkhxngelkhchikalng epnkhxpyhathiyakkhxhnung ephraakhntxnwithixnmiprasiththiphaphyngimepnthithrabinpccubn duephimthipyhaphlrwmestyxy aetkhntxnwithiaebbsuksasanuk heuristic thimiprasiththiphaphxyangsmehtusmphlkmiihichmakmay 28 sykrnykkalngsahrbchuxfngkchn aekikhkaristwykcanwnetmthdcakchuxhruxsylksnkhxngfngkchn sungduehmuxnwafngkchnnnkalngthukykkalng odythwipcahmaythungkarprakxbfngkchn function composition makkwacaepnkarkhunsa dngnn f 3 x cungxachmaythung f f f x odyechphaaxyangying f 1 x tampktiichaesdngthungfngkchnphkphnkhxng f fngkchnsxn iterated function thiekidcakkarprakxbfngkchnepnpraoychninkarsuksaaefrkthlaelarabbechingphlwt dynamical system charls aebbebc epnkhnaerkthierimsuksapyhakarhakhakhxngrakthisxngechingfngkchn f 1 2 x xyangirktam fngkchntrioknmitikichsykrnphiessechnnndwyehtuphlthangprawtisastr klawkhux elkhchikalngthiepnbwkthukwangiwhlngchuxyxkhxngfngkchn hmaythungphllphthkhxngkarykkalngdwyelkhchikalngnn inkhnathielkhchikalng 1 aesdngthungfngkchnphkphn twxyangechn sin2x epnkarekhiynxyangyxaethn sin x 2 odyimichwngelb aetinkhnaediywkn sin 1x hmaythungfngkchnphkphnkhxngisnkhux arcsin x ephraamnimcaepntxngmiswnklbkhxngfngkchntrioknmitienuxngcakmnmichuxaelachuxyxkhxngmnexngxyuaelw echn 1 sin x sin x 1 kkhux csc x epntn syniymthikhlayknnikichkblxkarithumdwy echn log2x hmaythung log x 2 imich log log xkarwangnythwip aekikhphichkhnitnamthrrm aekikh karykkalngthimielkhchikalngepncanwnetm samarthniyamkhunsahrbokhrngsrangthikhxnkhangthwipinphichkhnitnamthrrmkahndih X epnestthimikardaeninkarthwiphakhxyanghnung sungmismbtikarepliynhmukhxngkalng power associativity aelaekhiynxyuinrupaebbkarkhunaelw xn thukniyamihepnphlkhunkhxng x canwn n tw sahrbsmachik x id khxng X aelacanwnthrrmchati n id thiimepnsuny sungniyamaebbewiynekididwa x 1 x displaystyle x 1 x x n x n 1 x for n gt 1 displaystyle x n x n 1 x quad hbox for n gt 1 camismbtitang dngtxipni x i x j x k x i x j x k displaystyle x i x j x k x i x j x k smbtikarepliynhmukhxngkalng x m n x m x n displaystyle x m n x m x n x m n x m n displaystyle x m n x mn thakardaeninkarnimismachikexklksnthngsxngdanepn 1 mkaesdngdwy e dngnn x0 cathukniyamihethakb 1 sahrbkha x id x 1 1 x x displaystyle x1 1x x exklksnsxngdan x 0 1 displaystyle x 0 1 thakardaeninkarnikmismachikphkphnthngsxngdanaelakarkhunepliynhmuid cathaihaemkma magma klayepnkrup twphkphnkhxng x samarthaesdngiddwy x 1 aelaepniptamkdpktithnghmdkhxngelkhchikalng x x 1 x 1 x 1 displaystyle xx 1 x 1 x 1 twphkphnsxngdan x y z x y z displaystyle xy z x yz karkhunepliynhmuid x n x 1 n displaystyle x n left x 1 right n x m n x m x n displaystyle x m n x m x n thakarkhunsamarthslbthiid twxyangechninxabieliynkrup cathaihkardaeninkarmismbtinidwy x y n x n y n displaystyle xy n x n y n thakardaeninkarthwiphakhnnekhiynxyuinrupaebbkarbwk sungmkichkbxabieliynkrup dngnnwli karykkalngkhuxkarkhunsa cungsamarthtikhwamidepn karkhunkhuxkarbwksa ephraachannkdaetlakhxkhxngkarykkalngkhangtnkethiybekhiyngidkbkdtang khxngkarkhunemuxeramikardaeninkarhlayxyangaelw kardaeninkarid xacthukkrathasaodyichkarykkalng karaesdngwakardaeninkarkalngthukkrathasa odypkticaissylksnkakbtwyk xathi x n hmaythung x x hrux x n hmaythung x x imwa kb caepnkardaeninkarxairktamsykrntwykkmiichechnkn odyechphaaineruxngthvsdikrup ephuxaesdngkarsngyukh conjugation xathi gh h 1gh emux g aela h epnsmachikkhxngkrupbangkrup aemwakarsngyukhcaptibtitamkdkhxngkarykkalngehmuxnkn aetimichtwxyangkhxngkarkhunsainkrniid khwxnedil quandle epnokhrngsrangechingphichkhnitchnidhnungthimikdkhxngkarsngyukhehlaniepnbthbathhlk est aekikh dubthkhwamhlkthi phlkhunkharthiesiyn tha n epncanwnthrrmchatiaela A epnestid niphcn An mkthukichephuxaesdngestkhxng n singxndbkhxngsmachikkhxng A singniethiybethakbkarkahndih An hmaythungestkhxngfngkchncak 0 1 2 n 1 ipyng A n singxndb a0 a1 a2 an 1 epntwaethnkhxngfngkchnthisngkhacak i ipyng aikahndihcanwnechingkarnb k thiimcakdaelaest A esthnung sykrn Ak kyngichaesdngthungestkhxngfngkchnthnghmdcakestthimikhnadethakb k ipyng A bangkhrngkekhiyninrupaebb kA ephuxthaihaetktangcakkarykkalngechingkarnb dngthicaidklawtxipkarykkalngaebbnythwipsamarthniyamkhunidsahrbkardaeninkarbnest hruxsahrbestthimiokhrngsrangphiessephimetim twxyangechninphichkhnitechingesn erasamarthaeckaecngdchniphlbwktrngkhxngpriphumiewketxrbnestdchniid hruxxacklawidwa i N V i displaystyle bigoplus i in mathbb N V i dd emux Vi aetlatwkhuxpriphumiewketxrpriphumihnung dngnntha Vi V sahrbaetlakha i aelw phllphthcakphlbwktrngsamarthekhiynihxyuinsykrnykkalngepn V N hruxekhiynephiyngaekh VN odythakhwamekhaicwaepnphlbwktrngodypriyay nxkcaknieraxacaethnthiest N dwycanwnechingkarnb n ephuxihid Vn aemwaimtxngeluxkestmatrthanecaacngthimiphawaechingkarnbepn n singnisamarthniyamodykhunxyukbsmsnthan isomorphism ephiyngethann emuxnaexa V maepnfild R sahrbcanwncring ethiybidkbpriphumiewketxrbntwexng aela n epncanwnthrrmchatibangcanwn caidpriphumiewketxrsamythisudthisuksakninphichkhnitechingesn nnkhuxpriphumiaebbyukhlid Rnthahakthankhxngkardaeninkarykkalngepnest kardaeninkarnncaeriykwaphlkhunkharthiesiynemuximmienguxnikhxunephimetim enuxngdwyphlkhunkharthiesiyntang ihphlepn n singxndb n tuple sungsamarthaesdngaethndwyfngkchnbnestthimiphawaechingkarnbthiehmaasm dngnn SN cunghmaythungestkhxngfngkchnthnghmdcak N ipyng S inkrnini S N f N S displaystyle S N equiv f colon N to S dd singniekhaknidkbkarykkalngkhxngcanwnechingkarnbinaengthiwa SN S N emux X hmaythungphawaechingkarnbkhxng X emux 2 thukniyamepnest 0 1 eracaid 2X 2 X emux 2X sungodypktiaesdngdwy P X khuxestkalngkhxng X estyxy Y aetlaestkhxng X sxdkhlxngknaebbhnungtxhnungkbfngkchnbn X thiihkha 1 sahrb x Y aelakha 0 sahrb x Y thvsdipraephth aekikh dubthkhwamhlkthi praephthpidkharthiesiyn ineruxngkhxngpraephthpidkharthiesiyn Cartesian closed category kardaeninkarykkalngthukichephuxkahndihxxbecktid epnkalngkhxngxxbecktxikxyanghnung singniepnkarwangnythwipkhxngphlkhunkharthiesiyninpraephth category khxngest tha 0 epnxxbeckterimtn initial object inpraephthpidkharthiesiyn dngnnxxbecktelkhchikalng exponential object 00 casmsnthankbxxbecktplaythang 1 id canwnechingkarnbaelacanwnechingxndbthi aekikh dubthkhwamhlkthi elkhkhnitechingkarnb aela elkhkhnitechingxndbthi inthvsdiest kmikarykkalngsahrbcanwnechingkarnbaelacanwnechingxndbthiechnknkahndih k aela l epncanwnechingkarnb niphcn kl hmaythungphawaechingkarnbkhxng estkhxngfngkchncakestid thimiphawaechingkarnb l ipyngestid thimiphawaechingkarnb k 4 tha k aela l epncanwncakd niphcnnicakhlxytamkardaeninkarykkalngechingelkhkhnitthrrmda twxyangechn estkhxngsamsingxndb khxngsmachikcakestkhxngsxngsingxndb camiphawaechingkarnbethakb 8 23karykkalngkhxngcanwnechingkarnbaetktangcakkarykkalngkhxngcanwnechingxndbthi sungniyamodykrabwnkarlimitthiekiywkhxngkbxupnyechingxnnt transfinite induction karykkalngsxn aekikhenuxngcakkarykkalngkhxngcanwnthrrmchatimiehtumacakkarkhunsa cungmikhwamepnipidthicaniyamkardaeninkarthimiehtumacakkarykkalngsa echnediywkn kardaeninkarnibangkhrngeriykwa ethethrchn tetration aelaethethrchnsa ksamarthnaipsukardaeninkarxikxyanghnungechnkn epnechnnitxiperuxy ladbkhxngkardaeninkarehlaniidthukaesdngiwdwyfngkchnxkhekhxrmnn Ackermann function aelasykrnluksrkhxngkhnuth Knuth s up arrow notation aelaenuxngdwykarykkalngmixtraephimkhunmakkwakarkhun karkhunkmixtraephimkhunmakkwakarbwk dngnnethethrchnkmixtraephimkhunmakkwakarykkalng twxyangechn emuxkahndkha 3 3 ihkbfngkchnkarbwk karkhun karykkalng aelaethethrchn caidphllphthxxkmaepn 6 9 27 aela 7 625 597 484 987 tamladbinphasaopraekrm aekikhsykrntwyk xy sadwkinkarekhiyndwymux aetxacimsadwkinkarkdbnekhruxngphimphdidhruxkhxmphiwetxrethxrminl sungcdxkkhrathuktwxyubnesnbrrthdediywkn phasaopraekrmhlayphasamiwithikarxyangxuninkaraesdngkarykkalngodyimichtwyk xathi x y xlkxl khxmomdxrebsik x y ebsik ec aemtaelb xar imokhrsxfth exkesl ethks TeX aelatwtxyxdxun thiix ebsik bisi elkhchikalngcanwnetm aehsekll elkhchikalngcanwnetmthiimepnlb lw Lua exexsphi aelarabbphichkhnitkhxmphiwetxrswnihy x y aehsekll thanessswn elkhchikalngcanwnetm di x y exda aebch okhbxl fxraethrn fxksophr knuphlxt oxaekheml ephirl phiaexl wn iphthxn erks REXX rubi aess SAS thisiaexl xabp aehsekll elkhchikalngcanwncudlxytw thwring wiexchdiaexl x y exphiaexl Power x y imokhrsxfth exkesl edlfi paskal prakasinyunit Math pow x y si siphlsphls phiexchphi thisiaexl math pow x y iphthxn Math pow x y cawa cawaskhript mxdula 3 exmaexlmatrthan Math Pow x y hrux BigInteger Pow x y sicharp aelaphasaxunthiichbisiaexl expt x y khxmmxnlisp skim math pow x y exxraelngsylksn thiimekiywkbkarykkalngechn inaebch si siphlsphls sicharp cawa cawaskhript ephirl phiexchphi iphthxn aelarubi hmaythungkardaeninkar XOR radbbit inpaskal hmaythungkarxangthungthangxxm indirection inoxaekhemlaelaexmaexlmatrthan hmaythungkartxsayxkkhra concatenation prawtikhxngsykrn aekikhkhawa kalng power thukichodyyukhlid nkkhnitsastrchawkrik sahrbykkalngsxngesntrng 29 inkhriststwrrsthi 9 muhmmd xibn musa xlkhxwarismiy Muḥammad ibn Musa al Khwarizmi ichkhawa ml mal sahrbykkalngsxngaela kb kab sahrbykkalngsam inewlatxmankkhnitsastrchawxislamidich m aela k epnsykrnkhnitsastrtamladb dngehnidcaknganekhiynkhxng xabu xlhasn xibn xali xlekaalasxdi Abu al Ḥasan ibn ʿAli al Qalaṣadi inkhriststwrrsthi 15 30 niokla chuwek Nicolas Chuquet ichrupaebbsykrnykkalnginkhriststwrrsthi 15 txmainkhriststwrrsthi 16 ehnrikhus krmmathxys Henricus Grammateus aelamikhaexl chtiefil Michael Stifel kichechnkn aesmwl cik Samuel Jeake idaenanaihichkhawa dchni index inpi kh s 1696 29 inkhriststwrrsthi 16 orebirt erkhxrd Robert Recorde ichkhawa saekhwr square khiwb cube esnsiesnsik zenzizenzic esxrfxild surfolide esnsikhiwb zenzicube esekhindesxrfxild second surfolide aela esnsiesnsiesnsik zenzizenzizenzic sahrbkarykkalngsxngthungaepdtamladb 31 nxkcaknikmikarichkhawa ibkhwxedrt biquadrate ephuxxangthungkarykkalngsixikdwynkkhnitsastrbangkhn echnixaesk niwtn ichelkhchikalngechphaaemuxmikalngmakkwasxng aelaniymaesdngkalngsxngepnkarkhunsasxngtw dngnnemuxphwkekhaekhiynphhunam phwkekhacaekhiynepnrupaebbdngtwxyang ax bxx cx3 d epntnkhaxikkhahnungthimikhwamhmayehmuxnkarykkalnginxditkhux xinowluchn involution 32 aetinpccubnkhwamhmaythisamykwakhxngkhanikhux xawtnakar involution khuxfngkchnthiepnfngkchnphkphnkhxngtwexngxangxing aekikh niyamkhxngrakpthmthanmukhsakhy samarthphbidinaehlngkhxmultxipni Thomas H Cormen Charles E Leiserson Ronald L Rivest and Clifford Stein 2001 Introduction to Algorithms second ed MIT Press ISBN 0262032937 CS1 maint multiple names authors list link Online resource Paul Cull Mary Flahive and Robby Robson 2005 Difference Equations From Rabbits to Chaos Undergraduate Texts in Mathematics ed Springer ISBN 0387232346 CS1 maint multiple names authors list link Defined on page 351 available on Google books Principal root of unity MathWorld Complex number to a complex power may be real thikhtedxanxt ihkhxmulxangxingsahrb i i Steiner J Clausen T Abel NH 1827 Aufgaben und Lehrsatze erstere aufzulosen letztere zu beweisen Journal fur die reine und angewandte Mathematik 2 286 287 CS1 maint multiple names authors list link 4 0 4 1 N Bourbaki Elements of Mathematics Theory of Sets Springer Verlag 2004 III 3 5 Some textbooks leave the quantity 00 undefined because the functions x0 and 0x have different limiting values when x decreases to 0 But this is a mistake We must define x0 1 for all x if the binomial theorem is to be valid when x 0 y 0 and or x y The binomial theorem is too important to be arbitrarily restricted By contrast the function 0x is quite unimportant Ronald Graham Donald Knuth and Oren Patashnik 1989 01 05 Binomial coefficients Concrete Mathematics 1st ed Addison Wesley Longman Publishing Co p 162 ISBN 0 201 14236 8 CS1 maint multiple names authors list link Malik S C 1992 Mathematical Analysis New York Wiley p 223 ISBN 978 8122403237 In general the limit of f x ps x when x a in case the limits of both the functions exist is equal to the limit of the numerator divided by the denominator But what happens when both limits are zero The division 0 0 then becomes meaningless A case like this is known as an indeterminate form Other such forms are 0 00 1 and 0 Unknown parameter coauthors ignored author suggested help L J Paige 1954 A note on indeterminate forms American Mathematical Monthly 61 3 189 190 doi 10 2307 2307224 Unknown parameter month ignored help sci math FAQ What is 0 0 Rotando Louis M Korn Henry 1977 The Indeterminate Form 00 Mathematics Magazine Mathematical Association of America 50 1 41 42 doi 10 2307 2689754 Lipkin Leonard J 2003 On the Indeterminate Form 00 The College Mathematics Journal Mathematical Association of America 34 1 55 56 doi 10 2307 3595845 Let s start at x 0 Here xx is undefined Mark D Meyerson The xx Spindle Mathematics Magazine 69 no 3 June 1996 198 206 Examples include Edwards and Penny 1994 Calculus 4th ed Prentice Hall p 466 and Keedy Bittinger and Smith 1982 Algebra Two Addison Wesley p 32 Donald C Benson The Moment of Proof Mathematical Epiphanies New York Oxford University Press UK 1999 ISBN 978 0 19 511721 9 14 0 14 1 Donald E Knuth Two notes on notation Amer Math Monthly 99 no 5 May 1992 403 422 Augustin Louis Cauchy Cours d Analyse de l Ecole Royale Polytechnique 1821 In his Oeuvres Completes series 2 volume 3 Guillaume Libri Note sur les valeurs de la fonction 00x Journal fur die reine und angewandte Mathematik 6 1830 67 72 Guillaume Libri Memoire sur les fonctions discontinues Journal fur die reine und angewandte Mathematik 10 1833 303 316 A F Mobius Beweis der Gleichung 00 1 nach J F Pfaff Journal fur die reine und angewandte Mathematik 12 1834 134 136 Handbook of Floating Point Arithmetic Birkhauser Boston 2009 p 216 ISBN 978 0817647049 John Benito April 2003 Rationale for International Standard Programming Languages C PDF Revision 5 10 182 Cite journal requires journal help 20double 29 Math Java 2 Platform SE 1 4 2 pow Check url value help Oracle NET Framework Class Library Math Pow Method Microsoft Sage worksheet calculating x 0 Jason Grout Wolfram Alpha calculates a 0 Wolfram Alpha LLC accessed July 24 2011 Wolfram Alpha calculates 0 a Wolfram Alpha LLC accessed July 24 2011 Wolfram Alpha calculates 0 0 Wolfram Alpha LLC accessed July 24 2011 N Bourbaki Topologie generale V 4 2 Gordon D M 1998 A survey of fast exponentiation methods J Algorithms 27 1 Apr 1998 129 146 doi http dx doi org 10 1006 jagm 1997 0913 29 0 29 1 O Connor John J Robertson Edmund F Etymology of some common mathematical terms MacTutor History of Mathematics archive University of St Andrews O Connor John J Robertson Edmund F Abu l Hasan ibn Ali al Qalasadi MacTutor History of Mathematics archive University of St Andrews Quinion Michael Zenzizenzizenzic the eighth power of a number World Wide Words subkhnemux 2010 03 19 khacakdkhwamkhxng involution praktin OED second edition tiphimphemux kh s 1989 aela Merriam Webster online dictionary 1 karichlasudinkhwamhmaynixangxingody OED tiphimphemux kh s 1806 duephim aekikhlxkarithum lxkarithumechingsxn karesuxmslayaebbelkhchikalng karetibotaebbelkhchikalng fngkchnelkhchikalng karykkalngmxdular rakthi n ethethrchnaehlngkhxmulxun aekikhsci math FAQ What is 00 Introducing 0th power on PlanetMath Laws of Exponents with derivation and examples What does 0 0 zero to the zeroth power equal on AskAMathematician com elkhykkalngphunthan elkhykkalnginrupaebbessswnekhathungcak https th wikipedia org w index php title karykkalng amp oldid 8334425, wikipedia, วิกิ หนังสือ, หนังสือ, ห้องสมุด,

บทความ

, อ่าน, ดาวน์โหลด, ฟรี, ดาวน์โหลดฟรี, mp3, วิดีโอ, mp4, 3gp, jpg, jpeg, gif, png, รูปภาพ, เพลง, เพลง, หนัง, หนังสือ, เกม, เกม