fbpx
วิกิพีเดีย

Hexahedron

ดูภาพที่มีความละเอียดสูงกว่า(742 × 826 พิกเซล, ขนาดไฟล์: 51 กิโลไบต์, ชนิดไมม์: image/jpeg)

รูปภาพหรือไฟล์เสียงนี้ ต้นฉบับอยู่ที่ คอมมอนส์ รายละเอียดด้านล่าง เป็นข้อความที่แสดงผลจาก ไฟล์ต้นฉบับในคอมมอนส์
คอมมอนส์เป็นเว็บไซต์ในโครงการสำหรับเก็บรวบรวมสื่อเสรี ที่ คุณสามารถช่วยได้

ความย่อ

คำอธิบาย
English: A Hexahedron (cube). A regular polyhedron.
แหล่งที่มา see below
ผู้สร้างสรรค์ The original uploader was Cyp ที่ วิกิพีเดียภาษาอังกฤษ.
ภาพนี้มีภาพในรูปแบบเวกเตอร์ (SVG)
หากภาพ SVG ทำให้การแสดงผลดีกว่า หน้าที่ใช้ภาพนี้ควรเปลี่ยนไปใช้ภาพ SVG แทน

File:Hexahedron.jpg → File:Hexahedron.svg

สำหรับข้อมูลเพิ่มเติมเกี่ยวกับภาพเวกเตอร์ ดูที่ การเปลี่ยนไปใช้ภาพ SVG ในคอมมอนส์
นอกจากนี้สามารถดูเพิ่มเติมเกี่ยวกับ ข้อมูลเกี่ยวกับการรองรับภาพ SVG สำหรับซอฟต์แวร์มีเดียวิกิ ได้

ในภาษาอื่นๆ

Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  עברית  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча/tatarça  українська  vèneto  Tiếng Việt  中文(简体)  中文(繁體)  +/−

การอนุญาตใช้สิทธิ

อนุญาตให้คัดลอก แจกจ่ายและ/หรือดัดแปรเอกสารนี้ภายใต้เงื่อนไขของสัญญาอนุญาตเอกสารเสรีของกนู รุ่น 1.2 หรือรุ่นใด ๆ นับจากนี้ที่ออกโดยมูลนิธิซอฟต์แวร์เสรี โดยไม่มีส่วนใดห้ามแก้ไข ไม่มีข้อความปกหน้าและปกหลัง สำเนาของสัญญาอนุญาตรวมอยู่ในส่วนชื่อ สัญญาอนุญาตเอกสารเสรีของกนู

ไฟล์นี้อยู่ภายใต้สัญญาอนุญาต ครีเอทีฟคอมมอนส์ แบบแสดงที่มา-อนุญาตแบบเดียวกัน 3.0 ต้นฉบับ
คุณสามารถ:
  • ที่จะแบ่งปัน – ที่จะทำสำเนา แจกจ่าย และส่งงานดังกล่าวต่อไป
  • ที่จะเรียบเรียงใหม่ – ที่จะดัดแปลงงานดังกล่าว
ภายใต้เงื่อนไขต่อไปนี้:
  • แสดงที่มา – คุณต้องให้เกียรติเจ้าของงานอย่างเหมาะสม โดยเพิ่มลิงก์ไปยังสัญญาอนุญาต และระบุหากมีการเปลี่ยนแปลง คุณอาจทำเช่นนี้ได้ในรูปแบบใดก็ได้ตามควร แต่ต้องไม่ใช่ในลักษณะที่แนะว่าผู้ให้อนุญาตสนับสนุนคุณหรือการใช้งานของคุณ
  • อนุญาตแบบเดียวกัน – หากคุณดัดแปลง เปลี่ยนรูป หรือต่อเติมงานนี้ คุณต้องใช้สัญญาอนุญาตแบบเดียวกันหรือแบบที่เหมือนกับสัญญาอนุญาตที่ใช้กับงานนี้เท่านั้น
ป้ายแสดงสถานะลิขสิทธิ์นี้ถูกเพิ่มเพื่อให้เป็นไปตามการเปลี่ยนแปลงสัญญาอนุญาตของมูลนิธิวิกิมีเดีย จาก GFDL ไปยัง GFDL ควบคู่กับ CC-BY-SA 3.0

Povray src code

Hexahedron, made by me using POV-Ray, see en:User:Cyp/Poly.pov for source.}}

//Picture *** Use flashiness=1 !!! *** // // +w1024 +h1024 +a0.3 +am2 // +w512 +h512 +a0.3 +am2 // //Movie *** Use flashiness=0.25 !!! *** // // +kc +kff120 +w256 +h256 +a0.3 +am2 // +kc +kff60 +w256 +h256 +a0.3 +am2 //"Fast" preview // +w128 +h128 #declare notwireframe=1; #declare withreflection=0; #declare flashiness=0.25; //Still pictures use 1, animated should probably be about 0.25. #macro This_shape_will_be_drawn()  //PLATONIC SOLIDS ***********  //tetrahedron() #declare rotation=seed(1889/*1894*/);  //hexahedron() #declare rotation=seed(7122);  //octahedron() #declare rotation=seed(4193);  //dodecahedron() #declare rotation=seed(4412);  //icosahedron() #declare rotation=seed(7719);  //weirdahedron() #declare rotation=seed(7412);  //ARCHIMEDIAN SOLIDS ***********  //cuboctahedron() #declare rotation=seed(1941);  //icosidodecahedron() #declare rotation=seed(2241);  //truncatedtetrahedron() #declare rotation=seed(8717);  //truncatedhexahedron() #declare rotation=seed(1345);  //truncatedoctahedron() #declare rotation=seed(7235);  //truncateddodecahedron() #declare rotation=seed(9374);  //truncatedicosahedron() #declare rotation=seed(1666);  //rhombicuboctahedron() #declare rotation=seed(6124);  //truncatedcuboctahedron() #declare rotation=seed(1156);  //rhombicosidodecahedron() #declare rotation=seed(8266);  //truncatedicosidodecahedron() #declare rotation=seed(1422);  //snubhexahedron(-1) #declare rotation=seed(7152);  //snubhexahedron(1) #declare rotation=seed(1477);  //snubdodecahedron(-1) #declare rotation=seed(5111);  //snubdodecahedron(1) #declare rotation=seed(8154);  //CATALAN SOLIDS ***********  //rhombicdodecahedron() #declare rotation=seed(7154);  //rhombictriacontahedron() #declare rotation=seed(1237);  //triakistetrahedron() #declare rotation=seed(7735);  //triakisoctahedron() #declare rotation=seed(5354);  //tetrakishexahedron() #declare rotation=seed(1788);  //triakisicosahedron() #declare rotation=seed(1044);  //pentakisdodecahedron() #declare rotation=seed(6100);  //deltoidalicositetrahedron() #declare rotation=seed(5643);  //disdyakisdodecahedron() #declare rotation=seed(1440);  //deltoidalhexecontahedron() #declare rotation=seed(1026);  //disdyakistriacontahedron() #declare rotation=seed(1556);  //pentagonalicositetrahedron(-1) #declare rotation=seed(7771);  //pentagonalicositetrahedron(1) #declare rotation=seed(3470);  //pentagonalhexecontahedron(-1) #declare rotation=seed(1046);  //pentagonalhexecontahedron(1) #declare rotation=seed(1096);  //PRISMS, ANTIPRISMS, ETC... ***********  //rprism(5) #declare rotation=seed(6620);  antiprism(5) #declare rotation=seed(6620);  //bipyramid(5) #declare rotation=seed(6620);  //trapezohedron(17) #declare rotation=seed(6620); #end #declare tau=(1+sqrt(5))/2; #declare sq2=sqrt(2); #declare sq297=sqrt(297); #declare xi=(pow(sq297+17,1/3)-pow(sq297-17,1/3)-1)/3; #declare sqweird=sqrt(tau-5/27); #declare ouch=pow((tau+sqweird)/2,1/3)+pow((tau-sqweird)/2,1/3); #declare alfa=ouch-1/ouch; #declare veta=(ouch+tau+1/ouch)*tau; #macro tetrahedron()  addpointsevensgn(<1,1,1>)  autoface() #end #macro hexahedron()  addpointssgn(<1,1,1>,<1,1,1>)  autoface() #end #macro octahedron()  addevenpermssgn(<1,0,0>,<1,0,0>)  autoface() #end #macro dodecahedron()  addpointssgn(<1,1,1>,<1,1,1>)  addevenpermssgn(<0,1/tau,tau>,<0,1,1>)  autoface() #end #macro icosahedron()  addevenpermssgn(<0,1,tau>,<0,1,1>)  autoface() #end #macro weirdahedron()  addpermssgn(<1,2,3>,<1,1,1>)  autoface() #end #macro cuboctahedron()  addevenpermssgn(<0,1,1>,<0,1,1>)  autoface() #end #macro icosidodecahedron()  addevenpermssgn(<0,0,2*tau>,<0,0,1>)  addevenpermssgn(<1,tau,1+tau>,<1,1,1>)  autoface() #end #macro truncatedtetrahedron()  addevenpermsevensgn(<1,1,3>)  autoface() #end #macro truncatedhexahedron()  addevenpermssgn(<sq2-1,1,1>,<1,1,1>)  autoface() #end #macro truncatedoctahedron()  addpermssgn(<0,1,2>,<0,1,1>)  autoface() #end #macro truncateddodecahedron()  addevenpermssgn(<0,1/tau,2+tau>,<0,1,1>)  addevenpermssgn(<1/tau,tau,2*tau>,<1,1,1>)  addevenpermssgn(<tau,2,1+tau>,<1,1,1>)  autoface() #end #macro truncatedicosahedron()  addevenpermssgn(<0,1,3*tau>,<0,1,1>)  addevenpermssgn(<2,1+2*tau,tau>,<1,1,1>)  addevenpermssgn(<1,2+tau,2*tau>,<1,1,1>)  autoface() #end #macro rhombicuboctahedron()  addevenpermssgn(<1+sq2,1,1>,<1,1,1>)  autoface() #end #macro truncatedcuboctahedron()  addpermssgn(<1,1+sq2,1+sq2*2>,<1,1,1>)  autoface() #end #macro rhombicosidodecahedron()  addevenpermssgn(<1,1,1+2*tau>,<1,1,1>)  addevenpermssgn(<tau,2*tau,1+tau>,<1,1,1>)  addevenpermssgn(<2+tau,0,1+tau>,<1,0,1>)  autoface() #end #macro truncatedicosidodecahedron()  addevenpermssgn(<1/tau,1/tau,3+tau>,<1,1,1>)  addevenpermssgn(<2/tau,tau,1+2*tau>,<1,1,1>)  addevenpermssgn(<1/tau,1+tau,3*tau-1>,<1,1,1>)  addevenpermssgn(<2*tau-1,2,2+tau>,<1,1,1>)  addevenpermssgn(<tau,3,2*tau>,<1,1,1>)  autoface() #end #macro snubhexahedron(s)  addpermsaltsgn(<1,1/xi,xi>*s)  autoface() #end #macro snubdodecahedron(s)  addevenpermsevensgn(<2*alfa,2,2*veta>*s)  addevenpermsevensgn(<alfa+veta/tau+tau,-alfa*tau+veta+1/tau,alfa/tau+veta*tau-1>*s)  addevenpermsevensgn(<-alfa/tau+veta*tau+1,-alfa+veta/tau-tau,alfa*tau+veta-1/tau>*s)  addevenpermsevensgn(<-alfa/tau+veta*tau-1,alfa-veta/tau-tau,alfa*tau+veta+1/tau>*s)  addevenpermsevensgn(<alfa+veta/tau-tau,alfa*tau-veta+1/tau,alfa/tau+veta*tau+1>*s)  autoface() #end #macro rhombicdodecahedron()  cuboctahedron() dual() #end #macro rhombictriacontahedron()  icosidodecahedron() dual() #end #macro triakistetrahedron()  truncatedtetrahedron() dual() #end #macro triakisoctahedron()  truncatedhexahedron() dual() #end #macro tetrakishexahedron()  truncatedoctahedron() dual() #end #macro triakisicosahedron()  truncateddodecahedron() dual() #end #macro pentakisdodecahedron()  truncatedicosahedron() dual() #end #macro deltoidalicositetrahedron()  rhombicuboctahedron() dual() #end #macro disdyakisdodecahedron()  truncatedcuboctahedron() dual() #end #macro deltoidalhexecontahedron()  rhombicosidodecahedron() dual() #end #macro disdyakistriacontahedron()  truncatedicosidodecahedron() dual() #end #macro pentagonalicositetrahedron(s)  snubhexahedron(s) dual() #end #macro pentagonalhexecontahedron(s)  snubdodecahedron(s) dual() #end #macro rprism(n)  #local a=sqrt((1-cos(2*pi/n))/2);  #local b=0; #while(b<n-.5)  addpointssgn(<sin(2*pi*b/n),cos(2*pi*b/n),a>,<0,0,1>)  #local b=b+1; #end  autoface() #end #macro antiprism(n)  #local a=sqrt((cos(pi/n)-cos(2*pi/n))/2);  #local b=0; #while(b<2*n-.5)  addpoint(<sin(pi*b/n),cos(pi*b/n),a>)  #local a=-a; #local b=b+1; #end  autoface() #end #macro bipyramid(n)  rprism(n) dual() #end #macro trapezohedron(n)  antiprism(n) dual() #end #declare points=array[1000]; #declare npoints=0; #declare faces=array[1000]; #declare nfaces=0; #macro addpoint(a)  #declare points[npoints]=a;  #declare npoints=npoints+1; #end #macro addevenperms(a)  addpoint(a)  addpoint(<a.y,a.z,a.x>)  addpoint(<a.z,a.x,a.y>) #end #macro addperms(a)  addevenperms(a)  addevenperms(<a.x,a.z,a.y>) #end #macro addpointssgn(a,s)  addpoint(a)  #if(s.x) addpointssgn(a*<-1,1,1>,s*<0,1,1>) #end  #if(s.y) addpointssgn(a*<1,-1,1>,s*<0,0,1>) #end  #if(s.z) addpoint(a*<1,1,-1>) #end #end #macro addevenpermssgn(a,s)  addpointssgn(a,s)  addpointssgn(<a.y,a.z,a.x>,<s.y,s.z,s.x>)  addpointssgn(<a.z,a.x,a.y>,<s.z,s.x,s.y>) #end #macro addpermssgn(a,s)  addevenpermssgn(a,s)  addevenpermssgn(<a.x,a.z,a.y>,<s.x,s.z,s.y>) #end #macro addpointsevensgn(a)  addpoint(a)  addpoint(a*<-1,-1,1>)  addpoint(a*<-1,1,-1>)  addpoint(a*<1,-1,-1>) #end #macro addevenpermsevensgn(a)  addevenperms(a)  addevenperms(a*<-1,-1,1>)  addevenperms(a*<-1,1,-1>)  addevenperms(a*<1,-1,-1>) #end #macro addpermsaltsgn(a)  addevenpermsevensgn(a)  addevenpermsevensgn(<a.x,a.z,-a.y>) #end /*#macro addevenpermssgn(a,s) //Calls addevenperms with, for each 1 in s, a.{x,y,z} replaced with {+,-}a.{x,y,z}  addevenperms(a)  #if(s.x) addevenpermssgn(a*<-1,1,1>,s*<0,1,1>) #end  #if(s.y) addevenpermssgn(a*<1,-1,1>,s*<0,0,1>) #end  #if(s.z) addevenperms(a*<1,1,-1>) #end #end*/ #macro addface(d,l)  #local a=vnormalize(d)/l;   #local f=1;  #local n=0; #while(n<nfaces-.5)  #if(vlength(faces[n]-a)<0.00001) #local f=0; #end  #local n=n+1; #end  #if(f)  #declare faces[nfaces]=a;  #declare nfaces=nfaces+1;  #end #end #macro dual()  #declare temp=faces;  #declare faces=points;  #declare points=temp;   #declare temp=nfaces;  #declare nfaces=npoints;  #declare npoints=temp;  #end #macro autoface() //WARNING: ONLY WORKS IF ALL EDGES HAVE EQUAL LENGTH  //Find edge length   #declare elength=1000;  #local a=0; #while(a<npoints-.5) #local b=0; #while(b<npoints-.5)  #local c=vlength(points[a]-points[b]); #if(c>0.00001 & c<elength) #local elength=c; #end  #local b=b+1; #end #local a=a+1; #end  //Find planes  //#macro planes()  #local a=0; #while(a<npoints-.5)  #local b=a+1; #while(b<npoints-.5)  #if(vlength(points[a]-points[b])<elength+0.00001) #local c=b+1; #while(c<npoints-.5)  #if(vlength(points[a]-points[c])<elength+0.00001)  #local n=vnormalize(vcross(points[b]-points[a],points[c]-points[a]));  #local d=vdot(n,points[a]);  #if(d<0) #local n=-n; #local d=-d; #end  #local f=1;  #local e=0; #while(e<npoints-.5)  #if(vdot(n, points[e])>d+0.00001) #local f=0; #end  #local e=e+1; #end  #if(f)  #declare ld=d;  addface(n,d) //plane { n, d }  #end  #end  #local c=c+1; #end #end  #local b=b+1; #end  #local a=a+1; #end #end This_shape_will_be_drawn() //Random rotations are (hopefully) equally distributed... #declare rot1=rand(rotation)*pi*2; #declare rot2=acos(1-2*rand(rotation)); #declare rot3=(rand(rotation)+clock)*pi*2; #macro dorot()  rotate rot1*180/pi*y  rotate rot2*180/pi*x  rotate rot3*180/pi*y #end //Scale shape to fit in unit sphere #local b=0; #local a=0; #while(a<npoints-.5)  #local c=vlength(points[a]); #if(c>b) #local b=c; #end #local a=a+1; #end #local a=0; #while(a<npoints-.5)  #local points[a]=points[a]/b; #local a=a+1; #end #local a=0; #while(a<nfaces-.5)  #local faces[a]=faces[a]*b; #local a=a+1; #end //Draw edges #macro addp(a)  #declare p[np]=a;  #declare np=np+1; #end #local a=0; #while(a<nfaces-.5)  #declare p=array[20];  #declare np=0;  #local b=0; #while(b<npoints-.5)  #if(vdot(faces[a],points[b])>1-0.00001) addp(b) #end  #local b=b+1; #end  #local c=0; #while(c<np-.5)  #local d=0; #while(d<np-.5) #if(p[c]<p[d]-.5)  #local f=1;  #local e=0; #while(e<np-.5) #if(e!=c & e!=d & vdot(vcross(points[p[c]],points[p[d]]),points[p[e]])<0)  #local f=0;  #end #local e=e+1; #end  #if(f)  object {  cylinder { points[p[c]], points[p[d]], .01 dorot() }  pigment { colour <.3,.3,.3> }  finish { ambient 0 diffuse 1 phong 1 }  }  #end #end   #local d=d+1; #end  #local c=c+1; #end #local a=a+1; #end /*#local a=0; #while(a<npoints-.5)  #local b=a+1; #while(b<npoints-.5)  #if(vlength(points[a]-points[b])<elength+0.00001)  object {  cylinder { points[a], points[b], .01 dorot() }  pigment { colour <.3,.3,.3> }  finish { ambient 0 diffuse 1 phong 1 }  }  #end  #local b=b+1; #end #local a=a+1; #end*/ //Draw points #local a=0; #while(a<npoints-.5)  object {  sphere { points[a], .01 dorot() }  pigment { colour <.3,.3,.3> }  finish { ambient 0 diffuse 1 phong 1 }  } #local a=a+1; #end #if(notwireframe) //Draw planes object {  intersection {  #local a=0; #while(a<nfaces-.5)  plane { faces[a], 1/vlength(faces[a]) }  #local a=a+1; #end  //planes()  //sphere { <0,0,0>, 1 }  //sphere { <0,0,0>, ld+.01 inverse }  dorot()  }  pigment { colour rgbt <.8,.8,.8,.4> }  finish { ambient 0 diffuse 1 phong flashiness #if(withreflection) reflection { .2 } #end }  //interior { ior 1.5 }  photons {  target on  refraction on  reflection on  collect on  } } #end // CCC Y Y PP // C Y Y P P // C Y PP // C Y P // CCC Y P #local a=0; #while(a<11.0001)  light_source { <4*sin(a*pi*2/11), 5*cos(a*pi*6/11), -4*cos(a*pi*2/11)> colour (1+<sin(a*pi*2/11),sin(a*pi*2/11+pi*2/3),sin(a*pi*2/11+pi*4/3)>)*2/11 }  #local a=a+1; #end background { color <1,1,1> } camera {  perspective  location <0,0,0>  direction <0,0,1>  right x/2  up y/2  sky <0,1,0>  location <0,0,-4.8>  look_at <0,0,0> } global_settings {  max_trace_level 40  photons {  count 200000  autostop 0  } } 
ภาพนี้มีภาพในรูปแบบเวกเตอร์ (SVG)
หากภาพ SVG ทำให้การแสดงผลดีกว่า หน้าที่ใช้ภาพนี้ควรเปลี่ยนไปใช้ภาพ SVG แทน

File:Hexahedron.jpg → File:Hexahedron.svg

สำหรับข้อมูลเพิ่มเติมเกี่ยวกับภาพเวกเตอร์ ดูที่ การเปลี่ยนไปใช้ภาพ SVG ในคอมมอนส์
นอกจากนี้สามารถดูเพิ่มเติมเกี่ยวกับ ข้อมูลเกี่ยวกับการรองรับภาพ SVG สำหรับซอฟต์แวร์มีเดียวิกิ ได้

ในภาษาอื่นๆ

Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  עברית  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча/tatarça  українська  vèneto  Tiếng Việt  中文(简体)  中文(繁體)  +/−

คำบรรยายโดยย่อ

เพิ่มคำบรรยายทรรทัดเดียวเพื่อขยายความว่าไฟล์นี้มีอะไร
Image of Cube

ไอเทมที่แสดงอยู่ในไฟล์นี้

ประกอบด้วย

สถานะลิขสิทธิ์

มีลิขสิทธิ์

สัญญาอนุญาต

GNU Free Documentation License, version 1.2 or later อังกฤษ

Creative Commons Attribution-ShareAlike 3.0 Unported อังกฤษ

ประวัติไฟล์

คลิกวันที่/เวลาเพื่อดูไฟล์ที่ปรากฏในขณะนั้น

วันที่/เวลารูปย่อขนาดผู้ใช้ความเห็น
ปัจจุบัน03:28, 7 มกราคม 2548742 × 826 (51 กิโลไบต์)Kjell AndréA Hexahedron (cube). A regular polyhedron.

การใช้ไฟล์ส่วนกลาง

วิกิอื่นต่อไปนี้ใช้ไฟล์นี้:

  • Düzgün çoxüzlülər
  • Платоново тяло
  • Mnohostěn
  • Wikipedista:Jan Hložanka
  • Platonisk legeme
  • Polyeder
  • Wikipedia:Löschkandidaten/17. Juli 2008
  • Cube
  • Regular icosahedron
  • Octahedron
  • Polyhedron
  • Rhombicuboctahedron
  • User:Cyp
  • Snub cube
  • Truncated octahedron
  • Truncated cube
  • Truncated cuboctahedron
  • Regular polyhedron
  • Regular polytope
  • Rhombic dodecahedron
  • Polyform
  • Triakis octahedron
  • Tetrakis hexahedron
  • Deltoidal icositetrahedron
  • Disdyakis dodecahedron
  • Pentagonal icositetrahedron
  • Sphericity
  • List of uniform polyhedra by vertex figure
  • Alternation (geometry)
  • User:Fropuff/Tables/Platonic solids
  • Coxeter–Dynkin diagram
  • Atomism
  • User:Mike40033/List of regular polytopes
  • Regular dodecahedron
  • Octacube (sculpture)
  • Template:Octahedral truncations
  • User:Cyp/Poly.pov
  • การใช้บน en.wikiversity.org
    • Distances/Vectors
  • Alternado (geometrio)
  • Platona solido
  • Kvazaŭregula romba kahelaro
  • ดูการใช้ทั่วโลกเพิ่มเติมของไฟล์นี้

    ไฟล, hexahedron, ไฟล, ประว, ไฟล, หน, าท, ภาพน, การใช, ไฟล, วนกลางขนาดของต, วอย, างน, กเซล, ความละเอ, ยดอ, กเซล, กเซล, กเซล, ภาพท, ความละเอ, ยดส, งกว, 8206, กเซล, ขนาดไฟล, โลไบต, ชน, ดไมม, image, jpeg, ปภาพหร, อไฟล, เส, ยงน, นฉบ, บอย, คอมมอนส, รายละเอ, ยดด, านล. ifl prawtiifl hnathimiphaphni karichiflswnklangkhnadkhxngtwxyangni 538 599 phikesl khwamlaexiydxun 216 240 phikesl 431 480 phikesl 742 826 phikesl duphaphthimikhwamlaexiydsungkwa 8206 742 826 phikesl khnadifl 51 kiolibt chnidimm image jpeg rupphaphhruxiflesiyngni tnchbbxyuthi khxmmxns raylaexiyddanlang epnkhxkhwamthiaesdngphlcak ifltnchbbinkhxmmxns khxmmxnsepnewbistinokhrngkarsahrbekbrwbrwmsuxesri thi khunsamarthchwyid khwamyx khaxthibayHexahedron jpg English A Hexahedron cube A regular polyhedron aehlngthima see belowphusrangsrrkh The original uploader was Cyp thi wikiphiediyphasaxngkvs phaphnimiphaphinrupaebbewketxr SVG hakphaph SVG thaihkaraesdngphldikwa hnathiichphaphnikhwrepliynipichphaph SVG aethn File Hexahedron jpg File Hexahedron svg sahrbkhxmulephimetimekiywkbphaphewketxr duthi karepliynipichphaph SVG inkhxmmxnsnxkcaknisamarthduephimetimekiywkb khxmulekiywkbkarrxngrbphaph SVG sahrbsxftaewrmiediywiki id inphasaxunAlemannisch العربية belaruskaya tarashkevica blgarski ব ল catala nohchijn cestina dansk Deutsch Ellhnika English British English Esperanto espanol eesti euskara فارسی suomi francais Frysk galego עברית hrvatski magyar հայերեն Bahasa Indonesia Ido italiano 日本語 ქართული 한국어 lietuviu makedonski മലയ ള Bahasa Melayu norsk bokmal Plattduutsch Nederlands norsk nynorsk norsk occitan polski portugues portugues do Brasil romană russkij sicilianu Scots slovencina slovenscina srpski srpski svenska தம ழ ithy Turkce tatarcha tatarca ukrayinska veneto Tiếng Việt 中文 简体 中文 繁體 karxnuyatichsiththi xnuyatihkhdlxk aeckcayaela hruxddaeprexksarniphayitenguxnikhkhxngsyyaxnuyatexksaresrikhxngknu run 1 2 hruxrunid nbcaknithixxkodymulnithisxftaewresri odyimmiswnidhamaekikh immikhxkhwampkhnaaelapkhlng saenakhxngsyyaxnuyatrwmxyuinswnchux syyaxnuyatexksaresrikhxngknuhttp www gnu org copyleft fdl html GFDL GNU Free Documentation License true trueiflnixyuphayitsyyaxnuyat khriexthifkhxmmxns aebbaesdngthima xnuyataebbediywkn 3 0 tnchbbkhunsamarth thicaaebngpn thicathasaena aeckcay aelasngngandngklawtxip thicaeriyberiyngihm thicaddaeplngngandngklaw phayitenguxnikhtxipni aesdngthima khuntxngihekiyrtiecakhxngnganxyangehmaasm odyephimlingkipyngsyyaxnuyat aelarabuhakmikarepliynaeplng khunxacthaechnniidinrupaebbidkidtamkhwr aettxngimichinlksnathiaenawaphuihxnuyatsnbsnunkhunhruxkarichngankhxngkhun xnuyataebbediywkn hakkhunddaeplng epliynrup hruxtxetimnganni khuntxngichsyyaxnuyataebbediywknhruxaebbthiehmuxnkbsyyaxnuyatthiichkbnganniethannpayaesdngsthanalikhsiththinithukephimephuxihepniptamkarepliynaeplngsyyaxnuyatkhxngmulnithiwikimiediy cak GFDL ipyng GFDL khwbkhukb CC BY SA 3 0 http creativecommons org licenses by sa 3 0 CC BY SA 3 0 Creative Commons Attribution Share Alike 3 0 true truePovray src code Hexahedron made by me using POV Ray see en User Cyp Poly pov for source Picture Use flashiness 1 w1024 h1024 a0 3 am2 w512 h512 a0 3 am2 Movie Use flashiness 0 25 kc kff120 w256 h256 a0 3 am2 kc kff60 w256 h256 a0 3 am2 Fast preview w128 h128 declare notwireframe 1 declare withreflection 0 declare flashiness 0 25 Still pictures use 1 animated should probably be about 0 25 macro This shape will be drawn PLATONIC SOLIDS tetrahedron declare rotation seed 1889 1894 hexahedron declare rotation seed 7122 octahedron declare rotation seed 4193 dodecahedron declare rotation seed 4412 icosahedron declare rotation seed 7719 weirdahedron declare rotation seed 7412 ARCHIMEDIAN SOLIDS cuboctahedron declare rotation seed 1941 icosidodecahedron declare rotation seed 2241 truncatedtetrahedron declare rotation seed 8717 truncatedhexahedron declare rotation seed 1345 truncatedoctahedron declare rotation seed 7235 truncateddodecahedron declare rotation seed 9374 truncatedicosahedron declare rotation seed 1666 rhombicuboctahedron declare rotation seed 6124 truncatedcuboctahedron declare rotation seed 1156 rhombicosidodecahedron declare rotation seed 8266 truncatedicosidodecahedron declare rotation seed 1422 snubhexahedron 1 declare rotation seed 7152 snubhexahedron 1 declare rotation seed 1477 snubdodecahedron 1 declare rotation seed 5111 snubdodecahedron 1 declare rotation seed 8154 CATALAN SOLIDS rhombicdodecahedron declare rotation seed 7154 rhombictriacontahedron declare rotation seed 1237 triakistetrahedron declare rotation seed 7735 triakisoctahedron declare rotation seed 5354 tetrakishexahedron declare rotation seed 1788 triakisicosahedron declare rotation seed 1044 pentakisdodecahedron declare rotation seed 6100 deltoidalicositetrahedron declare rotation seed 5643 disdyakisdodecahedron declare rotation seed 1440 deltoidalhexecontahedron declare rotation seed 1026 disdyakistriacontahedron declare rotation seed 1556 pentagonalicositetrahedron 1 declare rotation seed 7771 pentagonalicositetrahedron 1 declare rotation seed 3470 pentagonalhexecontahedron 1 declare rotation seed 1046 pentagonalhexecontahedron 1 declare rotation seed 1096 PRISMS ANTIPRISMS ETC rprism 5 declare rotation seed 6620 antiprism 5 declare rotation seed 6620 bipyramid 5 declare rotation seed 6620 trapezohedron 17 declare rotation seed 6620 end declare tau 1 sqrt 5 2 declare sq2 sqrt 2 declare sq297 sqrt 297 declare xi pow sq297 17 1 3 pow sq297 17 1 3 1 3 declare sqweird sqrt tau 5 27 declare ouch pow tau sqweird 2 1 3 pow tau sqweird 2 1 3 declare alfa ouch 1 ouch declare veta ouch tau 1 ouch tau macro tetrahedron addpointsevensgn lt 1 1 1 gt autoface end macro hexahedron addpointssgn lt 1 1 1 gt lt 1 1 1 gt autoface end macro octahedron addevenpermssgn lt 1 0 0 gt lt 1 0 0 gt autoface end macro dodecahedron addpointssgn lt 1 1 1 gt lt 1 1 1 gt addevenpermssgn lt 0 1 tau tau gt lt 0 1 1 gt autoface end macro icosahedron addevenpermssgn lt 0 1 tau gt lt 0 1 1 gt autoface end macro weirdahedron addpermssgn lt 1 2 3 gt lt 1 1 1 gt autoface end macro cuboctahedron addevenpermssgn lt 0 1 1 gt lt 0 1 1 gt autoface end macro icosidodecahedron addevenpermssgn lt 0 0 2 tau gt lt 0 0 1 gt addevenpermssgn lt 1 tau 1 tau gt lt 1 1 1 gt autoface end macro truncatedtetrahedron addevenpermsevensgn lt 1 1 3 gt autoface end macro truncatedhexahedron addevenpermssgn lt sq2 1 1 1 gt lt 1 1 1 gt autoface end macro truncatedoctahedron addpermssgn lt 0 1 2 gt lt 0 1 1 gt autoface end macro truncateddodecahedron addevenpermssgn lt 0 1 tau 2 tau gt lt 0 1 1 gt addevenpermssgn lt 1 tau tau 2 tau gt lt 1 1 1 gt addevenpermssgn lt tau 2 1 tau gt lt 1 1 1 gt autoface end macro truncatedicosahedron addevenpermssgn lt 0 1 3 tau gt lt 0 1 1 gt addevenpermssgn lt 2 1 2 tau tau gt lt 1 1 1 gt addevenpermssgn lt 1 2 tau 2 tau gt lt 1 1 1 gt autoface end macro rhombicuboctahedron addevenpermssgn lt 1 sq2 1 1 gt lt 1 1 1 gt autoface end macro truncatedcuboctahedron addpermssgn lt 1 1 sq2 1 sq2 2 gt lt 1 1 1 gt autoface end macro rhombicosidodecahedron addevenpermssgn lt 1 1 1 2 tau gt lt 1 1 1 gt addevenpermssgn lt tau 2 tau 1 tau gt lt 1 1 1 gt addevenpermssgn lt 2 tau 0 1 tau gt lt 1 0 1 gt autoface end macro truncatedicosidodecahedron addevenpermssgn lt 1 tau 1 tau 3 tau gt lt 1 1 1 gt addevenpermssgn lt 2 tau tau 1 2 tau gt lt 1 1 1 gt addevenpermssgn lt 1 tau 1 tau 3 tau 1 gt lt 1 1 1 gt addevenpermssgn lt 2 tau 1 2 2 tau gt lt 1 1 1 gt addevenpermssgn lt tau 3 2 tau gt lt 1 1 1 gt autoface end macro snubhexahedron s addpermsaltsgn lt 1 1 xi xi gt s autoface end macro snubdodecahedron s addevenpermsevensgn lt 2 alfa 2 2 veta gt s addevenpermsevensgn lt alfa veta tau tau alfa tau veta 1 tau alfa tau veta tau 1 gt s addevenpermsevensgn lt alfa tau veta tau 1 alfa veta tau tau alfa tau veta 1 tau gt s addevenpermsevensgn lt alfa tau veta tau 1 alfa veta tau tau alfa tau veta 1 tau gt s addevenpermsevensgn lt alfa veta tau tau alfa tau veta 1 tau alfa tau veta tau 1 gt s autoface end macro rhombicdodecahedron cuboctahedron dual end macro rhombictriacontahedron icosidodecahedron dual end macro triakistetrahedron truncatedtetrahedron dual end macro triakisoctahedron truncatedhexahedron dual end macro tetrakishexahedron truncatedoctahedron dual end macro triakisicosahedron truncateddodecahedron dual end macro pentakisdodecahedron truncatedicosahedron dual end macro deltoidalicositetrahedron rhombicuboctahedron dual end macro disdyakisdodecahedron truncatedcuboctahedron dual end macro deltoidalhexecontahedron rhombicosidodecahedron dual end macro disdyakistriacontahedron truncatedicosidodecahedron dual end macro pentagonalicositetrahedron s snubhexahedron s dual end macro pentagonalhexecontahedron s snubdodecahedron s dual end macro rprism n local a sqrt 1 cos 2 pi n 2 local b 0 while b lt n 5 addpointssgn lt sin 2 pi b n cos 2 pi b n a gt lt 0 0 1 gt local b b 1 end autoface end macro antiprism n local a sqrt cos pi n cos 2 pi n 2 local b 0 while b lt 2 n 5 addpoint lt sin pi b n cos pi b n a gt local a a local b b 1 end autoface end macro bipyramid n rprism n dual end macro trapezohedron n antiprism n dual end declare points array 1000 declare npoints 0 declare faces array 1000 declare nfaces 0 macro addpoint a declare points npoints a declare npoints npoints 1 end macro addevenperms a addpoint a addpoint lt a y a z a x gt addpoint lt a z a x a y gt end macro addperms a addevenperms a addevenperms lt a x a z a y gt end macro addpointssgn a s addpoint a if s x addpointssgn a lt 1 1 1 gt s lt 0 1 1 gt end if s y addpointssgn a lt 1 1 1 gt s lt 0 0 1 gt end if s z addpoint a lt 1 1 1 gt end end macro addevenpermssgn a s addpointssgn a s addpointssgn lt a y a z a x gt lt s y s z s x gt addpointssgn lt a z a x a y gt lt s z s x s y gt end macro addpermssgn a s addevenpermssgn a s addevenpermssgn lt a x a z a y gt lt s x s z s y gt end macro addpointsevensgn a addpoint a addpoint a lt 1 1 1 gt addpoint a lt 1 1 1 gt addpoint a lt 1 1 1 gt end macro addevenpermsevensgn a addevenperms a addevenperms a lt 1 1 1 gt addevenperms a lt 1 1 1 gt addevenperms a lt 1 1 1 gt end macro addpermsaltsgn a addevenpermsevensgn a addevenpermsevensgn lt a x a z a y gt end macro addevenpermssgn a s Calls addevenperms with for each 1 in s a x y z replaced with a x y z addevenperms a if s x addevenpermssgn a lt 1 1 1 gt s lt 0 1 1 gt end if s y addevenpermssgn a lt 1 1 1 gt s lt 0 0 1 gt end if s z addevenperms a lt 1 1 1 gt end end macro addface d l local a vnormalize d l local f 1 local n 0 while n lt nfaces 5 if vlength faces n a lt 0 00001 local f 0 end local n n 1 end if f declare faces nfaces a declare nfaces nfaces 1 end end macro dual declare temp faces declare faces points declare points temp declare temp nfaces declare nfaces npoints declare npoints temp end macro autoface WARNING ONLY WORKS IF ALL EDGES HAVE EQUAL LENGTH Find edge length declare elength 1000 local a 0 while a lt npoints 5 local b 0 while b lt npoints 5 local c vlength points a points b if c gt 0 00001 amp c lt elength local elength c end local b b 1 end local a a 1 end Find planes macro planes local a 0 while a lt npoints 5 local b a 1 while b lt npoints 5 if vlength points a points b lt elength 0 00001 local c b 1 while c lt npoints 5 if vlength points a points c lt elength 0 00001 local n vnormalize vcross points b points a points c points a local d vdot n points a if d lt 0 local n n local d d end local f 1 local e 0 while e lt npoints 5 if vdot n points e gt d 0 00001 local f 0 end local e e 1 end if f declare ld d addface n d plane n d end end local c c 1 end end local b b 1 end local a a 1 end end This shape will be drawn Random rotations are hopefully equally distributed declare rot1 rand rotation pi 2 declare rot2 acos 1 2 rand rotation declare rot3 rand rotation clock pi 2 macro dorot rotate rot1 180 pi y rotate rot2 180 pi x rotate rot3 180 pi y end Scale shape to fit in unit sphere local b 0 local a 0 while a lt npoints 5 local c vlength points a if c gt b local b c end local a a 1 end local a 0 while a lt npoints 5 local points a points a b local a a 1 end local a 0 while a lt nfaces 5 local faces a faces a b local a a 1 end Draw edges macro addp a declare p np a declare np np 1 end local a 0 while a lt nfaces 5 declare p array 20 declare np 0 local b 0 while b lt npoints 5 if vdot faces a points b gt 1 0 00001 addp b end local b b 1 end local c 0 while c lt np 5 local d 0 while d lt np 5 if p c lt p d 5 local f 1 local e 0 while e lt np 5 if e c amp e d amp vdot vcross points p c points p d points p e lt 0 local f 0 end local e e 1 end if f object cylinder points p c points p d 01 dorot pigment colour lt 3 3 3 gt finish ambient 0 diffuse 1 phong 1 end end local d d 1 end local c c 1 end local a a 1 end local a 0 while a lt npoints 5 local b a 1 while b lt npoints 5 if vlength points a points b lt elength 0 00001 object cylinder points a points b 01 dorot pigment colour lt 3 3 3 gt finish ambient 0 diffuse 1 phong 1 end local b b 1 end local a a 1 end Draw points local a 0 while a lt npoints 5 object sphere points a 01 dorot pigment colour lt 3 3 3 gt finish ambient 0 diffuse 1 phong 1 local a a 1 end if notwireframe Draw planes object intersection local a 0 while a lt nfaces 5 plane faces a 1 vlength faces a local a a 1 end planes sphere lt 0 0 0 gt 1 sphere lt 0 0 0 gt ld 01 inverse dorot pigment colour rgbt lt 8 8 8 4 gt finish ambient 0 diffuse 1 phong flashiness if withreflection reflection 2 end interior ior 1 5 photons target on refraction on reflection on collect on end CCC Y Y PP C Y Y P P C Y PP C Y P CCC Y P local a 0 while a lt 11 0001 light source lt 4 sin a pi 2 11 5 cos a pi 6 11 4 cos a pi 2 11 gt colour 1 lt sin a pi 2 11 sin a pi 2 11 pi 2 3 sin a pi 2 11 pi 4 3 gt 2 11 local a a 1 end background color lt 1 1 1 gt camera perspective location lt 0 0 0 gt direction lt 0 0 1 gt right x 2 up y 2 sky lt 0 1 0 gt location lt 0 0 4 8 gt look at lt 0 0 0 gt global settings max trace level 40 photons count 200000 autostop 0 phaphnimiphaphinrupaebbewketxr SVG hakphaph SVG thaihkaraesdngphldikwa hnathiichphaphnikhwrepliynipichphaph SVG aethn File Hexahedron jpg File Hexahedron svg sahrbkhxmulephimetimekiywkbphaphewketxr duthi karepliynipichphaph SVG inkhxmmxnsnxkcaknisamarthduephimetimekiywkb khxmulekiywkbkarrxngrbphaph SVG sahrbsxftaewrmiediywiki id inphasaxunAlemannisch العربية belaruskaya tarashkevica blgarski ব ল catala nohchijn cestina dansk Deutsch Ellhnika English British English Esperanto espanol eesti euskara فارسی suomi francais Frysk galego עברית hrvatski magyar հայերեն Bahasa Indonesia Ido italiano 日本語 ქართული 한국어 lietuviu makedonski മലയ ള Bahasa Melayu norsk bokmal Plattduutsch Nederlands norsk nynorsk norsk occitan polski portugues portugues do Brasil romană russkij sicilianu Scots slovencina slovenscina srpski srpski svenska தம ழ ithy Turkce tatarcha tatarca ukrayinska veneto Tiếng Việt 中文 简体 中文 繁體 khabrryayodyyxithyephimkhabrryaythrrthdediywephuxkhyaykhwamwaiflnimixairxngkvsImage of CubeixethmthiaesdngxyuiniflniprakxbdwysthanalikhsiththimilikhsiththisyyaxnuyatGNU Free Documentation License version 1 2 or later xngkvsCreative Commons Attribution ShareAlike 3 0 Unported xngkvs prawtiifl khlikwnthi ewlaephuxduiflthipraktinkhnann wnthi ewlarupyxkhnadphuichkhwamehn pccubn03 28 7 mkrakhm 2548742 826 51 kiolibt Kjell AndreA Hexahedron cube A regular polyhedron hnathimiphaphni hnatxipni oyngmathiphaphni thrngtnephlot thrnglukbask thrnghlayhnaprkti luketa karichiflswnklang wikixuntxipniichiflni karichbn ar wikipedia org سداسي سطوح karichbn az wikipedia org Kub Duzgun coxuzluler karichbn bg wikipedia org Uikipediya Fajlove Platonovo tyalo karichbn ca wikipedia org Poliedre karichbn cs wikipedia org Platonske teleso Mnohosten Wikipedista Jan Hlozanka karichbn da wikipedia org Terning Platonisk legeme Polyeder karichbn de wikipedia org Benutzer Raphneck Wikipedia Loschkandidaten 17 Juli 2008 karichbn en wikipedia org Cuboctahedron Cube Regular icosahedron Octahedron Polyhedron Rhombicuboctahedron User Cyp Snub cube Truncated octahedron Truncated cube Truncated cuboctahedron Regular polyhedron Regular polytope Rhombic dodecahedron Polyform Triakis octahedron Tetrakis hexahedron Deltoidal icositetrahedron Disdyakis dodecahedron Pentagonal icositetrahedron Sphericity List of uniform polyhedra by vertex figure Alternation geometry User Fropuff Tables Platonic solids Coxeter Dynkin diagram Atomism User Mike40033 List of regular polytopes Regular dodecahedron Octacube sculpture Template Octahedral truncations User Cyp Poly pov karichbn en wikiversity org Distances Vectors karichbn eo wikipedia org Listo de regulaj hiperpluredroj Alternado geometrio Platona solido Kvazaŭregula romba kahelaro dukarichthwolkephimetimkhxngiflni ekhathungcak https th wikipedia org wiki ifl Hexahedron jpg, wikipedia, วิกิ หนังสือ, หนังสือ, ห้องสมุด,

    บทความ

    , อ่าน, ดาวน์โหลด, ฟรี, ดาวน์โหลดฟรี, mp3, วิดีโอ, mp4, 3gp, jpg, jpeg, gif, png, รูปภาพ, เพลง, เพลง, หนัง, หนังสือ, เกม, เกม