fbpx
วิกิพีเดีย

ฟังก์ชันเมอบีอุส

ฟังก์ชันเมอบีอุส (อังกฤษ: Möbius function) คลาสสสิก μ(n) เป็นฟังก์ชันเชิงการคูณสำคัญในทฤษฎีจำนวนและคณิตศาสตร์เชิงการจัด นักคณิตศาสตร์ชาวเยอรมัน ออกุส เฟอร์ดีนันด์ เมอบีอุสเป็นผู้ริเริ่มในปี 1832 เป็นกรรีพิเศษของวัตถุทั่วไปกว่าในคณิตศาสตร์เชิงการจัด

บทนิยาม

สำหรับจำนวนเต็มใด ๆ n นิยาม μ(n) ว่าเป็นผลรวมของ รากที่ n ปฐมฐานของ 1 มีค่าใน {−1, แม่แบบ:Num, แม่แบบ:Num} ขึ้นอยู่กับการแยกตัวประกอบของ n เป็นตัวประกอบเฉพาะ

  • μ(n) = 1 ถ้า n เป็นจำนวนเต็มบวกสแควร์ฟรี (square-free) ที่มีจำนวนตัวประกอบเฉพาะคู่
  • μ(n) = −1 ถ้า n เป็นจำนวนเต็มบวกสแควร์ฟรีที่มีจำนวนตัวประกอบเฉพาะคี่
  • μ(n) = 0 ถ้า n มีตัวประกอบเฉพาะกำลังสอง

ฟังก์ชันเมอบีอุสสามารถแสดงอีกอย่างได้เป็น

 

โดยที่ δω(n)Ω(n) เป็น โครเนกเกอร์เดลตา, λ(n) เป็น ฟังก์ชันอูลวิลล์, ω(n) เป็นจำนวนตัวหารเฉพาะไม่ซ้ำกันของ n, และ Ω(n) เป็นจำนวนตัวประกอบเฉพาะของ n, ที่นับด้วยภาวะรากซ้ำ

ค่าของ μ(n) สำหรับจำนวนบวก 30 จำนวนแรก (ลำดับ  A008683) ได้แก่

n 1 2 3 4 5 6 7 8 9 10
μ(n) 1 −1 −1 0 −1 1 −1 0 0 1
n 11 12 13 14 15 16 17 18 19 20
μ(n) −1 0 −1 1 1 0 −1 0 −1 0
n 21 22 23 24 25 26 27 28 29 30
μ(n) 1 1 −1 0 0 1 0 0 −1 −1

50 ค่าแรกของฟังก์ชันลงจุดได้ด้านล่าง

อ้างอิง

  1. Hardy & Wright, Notes on ch. XVI: "... μ(n) occurs implicitly in the works of Euler as early as 1748, but Möbius, in 1832, was the first to investigate its properties systematically."
  2. In the Disquisitiones Arithmeticae (1801) Carl Friedrich Gauss showed that the sum of the primitive roots (mod p) is μ(p − 1), (see #Properties and applications) but he didn't make further use of the function. In particular, he didn't use Möbius inversion in the Disquisitiones.

งก, นเมอบ, งกฤษ, möbius, function, คลาสสส, เป, นฟ, งก, นเช, งการค, ณสำค, ญในทฤษฎ, จำนวนและคณ, ตศาสตร, เช, งการจ, กคณ, ตศาสตร, ชาวเยอรม, ออก, เฟอร, นด, เมอบ, สเป, นผ, เร, มในป, 1832, เป, นกรร, เศษของว, ตถ, วไปกว, าในคณ, ตศาสตร, เช, งการจ, ดบทน, ยาม, แก, ไขสำหร,. fngkchnemxbixus xngkvs Mobius function khlasssik m n epnfngkchnechingkarkhunsakhyinthvsdicanwnaelakhnitsastrechingkarcd nkkhnitsastrchaweyxrmn xxkus efxrdinnd emxbixusepnphurieriminpi 1832 1 2 epnkrriphiesskhxngwtthuthwipkwainkhnitsastrechingkarcdbthniyam aekikhsahrbcanwnetmid n niyam m n waepnphlrwmkhxng rakthi n pthmthankhxng 1 mikhain 1 aemaebb Num aemaebb Num khunxyukbkaraeyktwprakxbkhxng n epntwprakxbechphaa m n 1 tha n epncanwnetmbwksaekhwrfri square free thimicanwntwprakxbechphaakhu m n 1 tha n epncanwnetmbwksaekhwrfrithimicanwntwprakxbechphaakhi m n 0 tha n mitwprakxbechphaakalngsxngfngkchnemxbixussamarthaesdngxikxyangidepn m n d w n W n l n displaystyle mu n delta omega n Omega n lambda n odythi dw n W n epn okhrenkekxredlta l n epn fngkchnxulwill w n epncanwntwharechphaaimsaknkhxng n aela W n epncanwntwprakxbechphaakhxng n thinbdwyphawaraksakhakhxng m n sahrbcanwnbwk 30 canwnaerk ladb A008683 idaek n 1 2 3 4 5 6 7 8 9 10m n 1 1 1 0 1 1 1 0 0 1n 11 12 13 14 15 16 17 18 19 20m n 1 0 1 1 1 0 1 0 1 0n 21 22 23 24 25 26 27 28 29 30m n 1 1 1 0 0 1 0 0 1 150 khaaerkkhxngfngkchnlngcudiddanlang xangxing aekikh Hardy amp Wright Notes on ch XVI m n occurs implicitly in the works of Euler as early as 1748 but Mobius in 1832 was the first to investigate its properties systematically In the Disquisitiones Arithmeticae 1801 Carl Friedrich Gauss showed that the sum of the primitive roots mod p is m p 1 see Properties and applications but he didn t make further use of the function In particular he didn t use Mobius inversion in the Disquisitiones ekhathungcak https th wikipedia org w index php title fngkchnemxbixus amp oldid 7376516, wikipedia, วิกิ หนังสือ, หนังสือ, ห้องสมุด,

บทความ

, อ่าน, ดาวน์โหลด, ฟรี, ดาวน์โหลดฟรี, mp3, วิดีโอ, mp4, 3gp, jpg, jpeg, gif, png, รูปภาพ, เพลง, เพลง, หนัง, หนังสือ, เกม, เกม