fbpx
วิกิพีเดีย

กฎการเคลื่อนที่ของดาวเคราะห์

กฎการเคลื่อนที่ของดาวเคราะห์ของเคปเลอร์ (อังกฤษ: Kepler's laws of planetary motion) คือกฎทางคณิตศาสตร์ 3 ข้อที่กล่าวถึงการเคลื่อนที่ของดาวเคราะห์ในระบบสุริยะ นักคณิตศาสตร์และนักดาราศาสตร์ชาวเยอรมันชื่อ โยฮันเนส เคปเลอร์ (พ.ศ. 2114พ.ศ. 2173) เป็นผู้ค้นพบ

ภาพแสดงกฎ 3 ข้อของเคปเลอร์ที่มีวงโคจรดาวเคราะห์ 2 วง (1) วงโคจรเป็นวงรีด้วยจุดโฟกัส f1 และ f2 สำหรับดาวเคราะห์ดวงแรกและ f1 และ f3 สำหรับดาวเคราะห์ดวงที่ 2 ดวงอาทิตย์อยู่ที่จุด f1 (2) ส่วนแรเงา 2 ส่วน A1 และ A2 มีผิวพื้นเท่ากันและเวลาที่ดาวเคราะห์ 1 ทับพื้นที่ A1 เท่ากับเวลาที่ทับพื้นที่ A2. (3) เวลารวมของวงโคจรสำหรับดาวเคราะห์ 1 และดาวเคราะห์ 2 มีสัดส่วนเท่ากับ .

เคปเลอร์ได้ศึกษาการสังเกตการณ์ของนักดาราศาสตร์ผู้มีชื่อเสียงชาวเดนมาร์กชื่อไทโค บราห์ (Tycho Brahe) โดยประมาณ พ.ศ. 2148 เคปเลอร์พบว่าการสังเกตตำแหน่งของดาวเคราะห์ของบราห์เป็นไปตามกฎง่ายๆ ทางคณิตศาสตร์

กฎของเคปเลอร์ท้าทายดาราศาสตร์สายอริสโตเติลและสายทอเลมีและกฎทางฟิสิกส์ในขณะนั้น เคปเลอร์ยืนยันว่าโลกเคลื่อนที่เป็นวงรีมากกว่าวงกลม และยังได้พิสูจน์ว่าความเร็วการเคลื่อนที่มีความผันแปรด้วย ซึ่งเป็นการเปลี่ยนแปลงความรู้ทางดาราศาสตร์และฟิสิกส์ อย่างไรก็ดี คำอธิบายเชิงฟิสิกส์เกี่ยวกับพฤติกรรมของดาวเคราะห์ก็ได้ปรากฏชัดเจนได้ในอีกเกือบศตวรรษต่อมา เมื่อไอแซก นิวตันสามารถสรุปกฎของเคปเลอร์ได้ว่าเข้ากันกับกฎการเคลื่อนที่และกฎความโน้มถ่วงสากลของนิวตันเองโดยใช้วิชาแคลคูลัสที่เขาคิดสร้างขึ้น รูปจำลองแบบอื่นที่นำมาใช้มักให้ผลผิดพลาด

กฎ 3 ข้อของเคปเลอร์

  1. วงโคจรของดาวเคราะห์ทุกดวงเป็นวงรี โดยมีดวงอาทิตย์เป็นจุดศูนย์กลางจุดหนึ่ง วงรีเกิดจากการมีจุดศูนย์กลาง 2 ศูนย์ ดังภาพ ดังนั้นเคปเลอร์จึงคัดค้านความเชื่อในแนวของอริสโตเติล ปโตเลมีและโคเปอร์นิคัสที่ว่าวงโคจรเป็นวงกลม
  2. ในขณะที่ดาวเคราะห์เคลื่อนไปในวงโคจร เส้นตรงที่เชื่อมระหว่างดาวเคราะห์กับดวงอาทิตย์กวาดพื้นที่เท่า ๆ กันในระยะเวลาเท่ากัน ซึ่งหมายความว่าดาวเคราะห์โคจรเร็วกว่าเมื่ออยู่ใกล้ดวงอาทิตย์และช้าลงเมื่ออยู่ห่างดวงอาทิตย์ ด้วยกฎข้อนี้ เคปเลอร์ได้ล้มทฤษฎีดาราศาสตร์อริสโตเติลที่ว่าดาวเคราะห์เคลื่อนที่ด้วยความเร็วคงที่
  3. กำลังสองของคาบการโคจรของดาวเคราะห์เป็นสัดส่วนโดยตรงกับกำลังสามของกึ่งแกนเอก (ครึ่งหนึ่งของความยาววงรี) ของวงโคจร ซึ่งหมายความว่า ไม่เพียงแต่วงโคจรที่ใหญ่กว่าเท่านั้นที่มีระยะเวลานานกว่า แต่อัตราความเร็วของดาวเคราะห์ที่มีวงโคจรทีใหญ่กว่านั้นก็โคจรช้ากว่าวงโคจรที่เล็กกว่าอีกด้วย

กฎของเคปเลอร์ได้แสดงไว้ข้างล่าง และเป็นกฎที่มาจากกฎของนิวตันที่ใช้พิกัดขั้วศูนย์สุริยะ (heliocentric polar coordinate)   อย่างไรก็ตาม กฎของเคปเลอร์ยังสามารถเขียนอย่างอื่นได้โดยใช้พิกัดคาร์ทีเซียน (Cartesian coordinates)

รายละเอียดทางคณิตศาสตร์

กฎข้อที่ 1

 
กฎเคปเลอร์ข้อที่ 1

กฎข้อแรกกล่าวว่า “วงโคจรของดาวเคราะห์ทุกดวงเป็นรูปวงรีที่มีดวงอาทิตย์เป็นจุดโฟกัสจุดหนึ่ง"

คณิตศาสตร์ของวงรีเป็นดังนี้

สมการคือ

 

โดยที่ p คือ กึ่งเลตัสเรกตัม (semi latus rectum) และ ε คือ ความเยื้องศูนย์กลาง (eccentricity) ซึ่งมีค่ามากกว่าหรือเท่ากับศูนย์ และน้อยกว่าหนึ่ง

เมื่อ θ=0° ดาวเคราะห์จะอยู่ที่จุดใกล้ดวงอาทิตย์ที่สุด

 

เมื่อ θ=90°: r=p และเมื่อ θ=180° ดาวเคราห์จะอยู่ที่จุดไกลดวงอาทิตย์ที่สุด:

 

กึ่งแกนเอกของวงรี a คือมัชฌิมเลขคณิตของ rmin และ rmax:

 

กึ่งแกนโทของวงรี b คือมัชฌิมเรขาคณิตของ rmin และ rmax:

 

นอกจากนี้ยังเป็นมัชฌิมเรขาคณิตระหว่างกึ่งแกนเอกกับกึ่งเลตัสเรกตัม

 

กฎข้อที่ 2

 
ภาพแสดงกฎเคปเลอร์ข้อที่ 2

กฎข้อที่ 2 “เส้นตรงที่เชื่อมระหว่างดาวเคราะห์กับดวงอาทิตย์ กวาดพื้นที่เท่า ๆ กันในระยะเวลาเท่ากัน”

กฎนี้รู้จักในอีกชื่อหนึ่งที่ว่ากฎพื้นที่เท่า ซึ่งเป็นผลสืบเนื่องโดยตรงจากกฎการอนุรักษ์โมเมนตัมเชิงมุม (law of conservation of angular momentum) โปรดดูการการอนุพัทธ์ดังภาพ

การคำนวณมี 4 ขั้นดังนี้

1. คำนวณ มุมกวาดเฉลี่ย (mean anomaly) M จากสูตร
 
2. คำนวณ มุมกวาดเยื้องศูนย์กลาง eccentric anomaly E โดยการแก้ สมการของเคปเลอร์:
 
3. คำนวณ มุมกวาดจริง (true anomaly) θ โดยใช้สมการ:
 
4. คำนวณ ระยะห่างศูนย์สุริยะ (heliocentric distance) r จากกฎข้อแรก:
 

กฎข้อที่ 3

กฎข้อที่ 3 “กำลังสองของคาบการโคจรของดาวเคราะห์เป็นสัดส่วนโดยตรงกับกำลังสามของกึ่งแกนเอกของวงโคจร” ดังนั้น ไม่เพียงความยาววงโคจรจะเพิ่มด้วยระยะทางแล้ว ความเร็วของการโคจรจะลดลงด้วย การเพิ่มของระยะเวลาการโคจรจึงเป็นมากกว่าการเป็นสัดส่วน

 
  = คาบการโคจรของดาวเคราะห์
  = แกนกึ่งเอกของวงโคจร

ดังนั้น P2·a–3 มีค่าเหมือนกันสำหรับดาวเคราะห์ทุกดวงในระบบสุริยะรวมทั้งโลก เมื่อหน่วยหนึ่งถูกเลือก เช่น P ที่วัดเป็นปีดาราคติ (sidereal year) และ a ในหน่วยดาราศาสตร์ (astronomical unit) P2·a–3 มีค่า 1 สำหรับดาวเคราะห์ทุกดวงในระบบสุริยะ ในหน่วยเอสไอ:  

ตำแหน่งในฟังก์ชันของเวลา

 

ปัญหาเคปเลอร์อนุมานการโคจรวงรีและจุด 4 จุด:

  • s ดวงอาทิตย์ (ณ โฟกัสหนึ่งของวงรี);
  • z จุดใกล้ดวงอาทิตย์ที่สุด
  • c ศูนย์กลางของวงรี
  • p ดาวเคราะห์

และ

  semimajor axis ระยะจากศูนย์กลางถึงจุดใกล้ดวงอาทิตย์ที่สุด นั่นคือกึ่งแกนเอก
  ความเยื้องศูนย์กลาง
  กึ่งแกนโท
  ระยะจากดวงอาทิตย์ถึงดาวเคราะห์
  ตำแหน่งดาวเคราะห์ตามที่เห็นจากดวงอาทิตย์ นั่นคือ มุมกวาดจริง

ปัญหาคือการคำนวณพิกัดเชิงขั้ว (r,ν) ของดาวเคราะห์จากเวลานับตั้งแต่ดาวเคราะห์ผ่านจุดใกล้ดวงอาทิตย์ที่สุด, t

    และ

 , y จากที่เห็นจากศูนย์กลาง นั่นคือมุมกวาดเฉลี่ย

  ,

 

โดย T คือคาบการโคจร

 
 

Division by a²/2 gives Kepler's equation

 .
 
 
 

to get

 
 

จะได้

 

คูณด้วย (1+ε)/(1−ε) และใส่รากที่สอง จะได้ผลลัพธ์

 

ในขั้นที่สามนี้เราจะได้ความเชื่อมโยงกันระหว่างเวลากับตำแหน่งในวงโคจร

ขั้นที่สี่คือการคำนวณระยะห่างศูนย์สุริยะ r จากมุมกวาดจริง ν ด้วยกฎข้อแรกของเคปเลอร์:

 

การอนุพัทธ์ (Derivation) กฎของนิวตัน

การอนุพัทธ์ของกฎเคปเลอร์ข้อที่ 2

 


 

where   is the tangential unit vector, and

 

So the position vector

 

is differentiated twice to give the velocity vector and the acceleration vector

 
 

Note that for constant distance,  , the planet is subject to the centripetal acceleration,  , and for constant angular speed,  , the planet is subject to the coriolis acceleration,  .

Inserting the acceleration vector into Newton's laws, and dividing by m, gives the vector equation of motion

 

Equating component, we get the two ordinary differential equations of motion, one for the radial acceleration and one for the tangential acceleration:

 
 

 

 

and integrate:

 

where   is a constant of integration, and exponentiate:

 

This says that the specific angular momentum   is a constant of motion, even if both the distance   and the angular speed   vary.

The area swept out from time t1 to time t2,

 

depends only on the duration t2t1. This is Kepler's second law.

การอนุพัทธ์ของกฎเคปเลอร์ข้อที่ 1

 
 

and get

 

and

 
 

Differentiate

 

twice:

 
 

Substitute into the radial equation of motion

 

and get

 

Divide by  

 


 
 

These solutions are

 

where   and   are arbitrary constants of integration. So the result is

 

Choosing the axis of the coordinate system such that  , and inserting  , gives:

 

If   this is Kepler's first law.

กฎเคปเลอร์ข้อที่ 3

 

where:

  • T = planet's sidereal period
  • r = radius of the planet's circular orbit
  • G = the gravitational constant
  • M = mass of the sun


 

โดย:

  • T = object's sidereal period
  • a = object's semimajor axis
  • G = the gravitational constant = 6.67 × 10−11 N • m²/kg²
  • M = mass of one object
  • m = mass of the other object


 
 
 


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 

Q.E.D.

อ้างอิง

  1. Hyman, Andrew. "A Simple Cartesian Treatment of Planetary Motion", European Journal of Physics, Vol. 14, pp. 145-147 (1993).
  2. "Kepler's Second Law" by Jeff Bryant with Oleksandr Pavlyk, The Wolfram Demonstrations Project.

ดูเพิ่ม

  • Kepler problem
  • Circular motion
  • Gravity
  • Two-body problem
  • Free-fall time

แหล่งข้อมูลอื่น

  • Crowell, Benjamin, Conservation Laws, http://www.lightandmatter.com/area1book2.html, an online book that gives a proof of the first law without the use of calculus. (see section 5.2, p.112)
  • David McNamara and Gianfranco Vidali, Kepler's Second Law -JAVA Interactive Tutorial, http://www.phy.syr.edu/courses/java/mc_html/kepler.html, an interactive JAVA applet that aids in the understanding of Kepler's Second Law.
  • University of Tennessee's Dept. Physics & Astronomy: Astronomy 161 page on Johannes Kepler: The Laws of Planetary Motion [1]
  • Equant compared to Kepler: interactive model [2]
  • Kepler's Third Law:interactive model[3]

กฎการเคล, อนท, ของดาวเคราะห, งก, ามภาษา, ในบทความน, ไว, ให, านและผ, วมแก, ไขบทความศ, กษาเพ, มเต, มโดยสะดวก, เน, องจากว, เด, ยภาษาไทยย, งไม, บทความด, งกล, าว, กระน, ควรร, บสร, างเป, นบทความโดยเร, วท, ดของเคปเลอร, งกฤษ, kepler, laws, planetary, motion, อกฎทางคณ,. lingkkhamphasa inbthkhwamni miiwihphuxanaelaphurwmaekikhbthkhwamsuksaephimetimodysadwk enuxngcakwikiphiediyphasaithyyngimmibthkhwamdngklaw krann khwrribsrangepnbthkhwamodyerwthisudkdkarekhluxnthikhxngdawekhraahkhxngekhpelxr xngkvs Kepler s laws of planetary motion khuxkdthangkhnitsastr 3 khxthiklawthungkarekhluxnthikhxngdawekhraahinrabbsuriya nkkhnitsastraelankdarasastrchaweyxrmnchux oyhnens ekhpelxr ph s 2114 ph s 2173 epnphukhnphbphaphaesdngkd 3 khxkhxngekhpelxrthimiwngokhcrdawekhraah 2 wng 1 wngokhcrepnwngridwycudofks f1 aela f2 sahrbdawekhraahdwngaerkaela f1 aela f3 sahrbdawekhraahdwngthi 2 dwngxathityxyuthicud f1 2 swnaerenga 2 swn A1 aela A2 miphiwphunethaknaelaewlathidawekhraah 1 thbphunthi A1 ethakbewlathithbphunthi A2 3 ewlarwmkhxngwngokhcrsahrbdawekhraah 1 aeladawekhraah 2 misdswnethakb a 1 3 2 a 2 3 2 displaystyle a1 3 2 a2 3 2 ekhpelxridsuksakarsngektkarnkhxngnkdarasastrphumichuxesiyngchawednmarkchuxithokh brah Tycho Brahe odypraman ph s 2148 ekhpelxrphbwakarsngekttaaehnngkhxngdawekhraahkhxngbrahepniptamkdngay thangkhnitsastrkdkhxngekhpelxrthathaydarasastrsayxrisotetilaelasaythxelmiaelakdthangfisiksinkhnann ekhpelxryunynwaolkekhluxnthiepnwngrimakkwawngklm aelayngidphisucnwakhwamerwkarekhluxnthimikhwamphnaeprdwy sungepnkarepliynaeplngkhwamruthangdarasastraelafisiks xyangirkdi khaxthibayechingfisiksekiywkbphvtikrrmkhxngdawekhraahkidpraktchdecnidinxikekuxbstwrrstxma emuxixaesk niwtnsamarthsrupkdkhxngekhpelxridwaekhaknkbkdkarekhluxnthiaelakdkhwamonmthwngsaklkhxngniwtnexngodyichwichaaekhlkhulsthiekhakhidsrangkhun rupcalxngaebbxunthinamaichmkihphlphidphlad enuxha 1 kd 3 khxkhxngekhpelxr 2 raylaexiydthangkhnitsastr 2 1 kdkhxthi 1 2 2 kdkhxthi 2 2 3 kdkhxthi 3 2 4 taaehnnginfngkchnkhxngewla 3 karxnuphthth Derivation kdkhxngniwtn 3 1 karxnuphththkhxngkdekhpelxrkhxthi 2 3 2 karxnuphththkhxngkdekhpelxrkhxthi 1 3 3 kdekhpelxrkhxthi 3 4 xangxing 5 duephim 6 aehlngkhxmulxunkd 3 khxkhxngekhpelxr aekikhwngokhcrkhxngdawekhraahthukdwngepnwngri odymidwngxathityepncudsunyklangcudhnung wngriekidcakkarmicudsunyklang 2 suny dngphaph dngnnekhpelxrcungkhdkhankhwamechuxinaenwkhxngxrisotetil potelmiaelaokhepxrnikhsthiwawngokhcrepnwngklm inkhnathidawekhraahekhluxnipinwngokhcr esntrngthiechuxmrahwangdawekhraahkbdwngxathitykwadphunthietha kninrayaewlaethakn sunghmaykhwamwadawekhraahokhcrerwkwaemuxxyuikldwngxathityaelachalngemuxxyuhangdwngxathity dwykdkhxni ekhpelxridlmthvsdidarasastrxrisotetilthiwadawekhraahekhluxnthidwykhwamerwkhngthi kalngsxngkhxngkhabkarokhcrkhxngdawekhraahepnsdswnodytrngkbkalngsamkhxngkungaeknexk khrunghnungkhxngkhwamyawwngri khxngwngokhcr sunghmaykhwamwa imephiyngaetwngokhcrthiihykwaethannthimirayaewlanankwa aetxtrakhwamerwkhxngdawekhraahthimiwngokhcrthiihykwannkokhcrchakwawngokhcrthielkkwaxikdwykdkhxngekhpelxridaesdngiwkhanglang aelaepnkdthimacakkdkhxngniwtnthiichphikdkhwsunysuriya heliocentric polar coordinate r 8 displaystyle r theta xyangirktam kdkhxngekhpelxryngsamarthekhiynxyangxunidodyichphikdkharthiesiyn Cartesian coordinates 1 raylaexiydthangkhnitsastr aekikhkdkhxthi 1 aekikh kdekhpelxrkhxthi 1 kdkhxaerkklawwa wngokhcrkhxngdawekhraahthukdwngepnrupwngrithimidwngxathityepncudofkscudhnung khnitsastrkhxngwngriepndngnismkarkhux r p 1 ϵ cos 8 displaystyle r frac p 1 epsilon cdot cos theta odythi p khux kungeltserktm semi latus rectum aela e khux khwameyuxngsunyklang eccentricity sungmikhamakkwahruxethakbsuny aelanxykwahnungemux 8 0 dawekhraahcaxyuthicudikldwngxathitythisud r m i n p 1 ϵ displaystyle r mathrm min frac p 1 epsilon emux 8 90 r p aelaemux 8 180 dawekhrahcaxyuthicudikldwngxathitythisud r m a x p 1 ϵ displaystyle r mathrm max frac p 1 epsilon kungaeknexkkhxngwngri a khuxmchchimelkhkhnitkhxng rmin aela rmax a p 1 ϵ 2 displaystyle a frac p 1 epsilon 2 kungaeknothkhxngwngri b khuxmchchimerkhakhnitkhxng rmin aela rmax b p 1 ϵ 2 displaystyle b frac p sqrt 1 epsilon 2 nxkcakniyngepnmchchimerkhakhnitrahwangkungaeknexkkbkungeltserktm a b b p displaystyle frac a b frac b p kdkhxthi 2 aekikh phaphaesdngkdekhpelxrkhxthi 2 kdkhxthi 2 esntrngthiechuxmrahwangdawekhraahkbdwngxathity kwadphunthietha kninrayaewlaethakn 2 kdniruckinxikchuxhnungthiwakdphunthietha sungepnphlsubenuxngodytrngcakkdkarxnurksomemntmechingmum law of conservation of angular momentum oprddukarkarxnuphththdngphaphkarkhanwnmi 4 khndngni 1 khanwn mumkwadechliy mean anomaly M caksutrM 2 p t P displaystyle M frac 2 pi t P dd 2 khanwn mumkwadeyuxngsunyklang eccentric anomaly E odykaraek smkarkhxngekhpelxr M E ϵ sin E displaystyle M E epsilon cdot sin E dd 3 khanwn mumkwadcring true anomaly 8 odyichsmkar tan 8 2 1 ϵ 1 ϵ tan E 2 displaystyle tan frac theta 2 sqrt frac 1 epsilon 1 epsilon cdot tan frac E 2 dd 4 khanwn rayahangsunysuriya heliocentric distance r cakkdkhxaerk r p 1 ϵ cos 8 displaystyle r frac p 1 epsilon cdot cos theta dd kdkhxthi 3 aekikh kdkhxthi 3 kalngsxngkhxngkhabkarokhcrkhxngdawekhraahepnsdswnodytrngkbkalngsamkhxngkungaeknexkkhxngwngokhcr dngnn imephiyngkhwamyawwngokhcrcaephimdwyrayathangaelw khwamerwkhxngkarokhcrcaldlngdwy karephimkhxngrayaewlakarokhcrcungepnmakkwakarepnsdswn P 2 a 3 displaystyle P 2 propto a 3 P displaystyle P khabkarokhcrkhxngdawekhraah a displaystyle a aeknkungexkkhxngwngokhcrdngnn P2 a 3 mikhaehmuxnknsahrbdawekhraahthukdwnginrabbsuriyarwmthngolk emuxhnwyhnungthukeluxk echn P thiwdepnpidarakhti sidereal year aela a inhnwydarasastr astronomical unit P2 a 3 mikha 1 sahrbdawekhraahthukdwnginrabbsuriya inhnwyexsix P 2 a 3 3 00 10 19 s 2 m 3 0 7 displaystyle frac P 2 a 3 3 00 times 10 19 frac s 2 m 3 pm 0 7 taaehnnginfngkchnkhxngewla aekikh pyhaekhpelxrxnumankarokhcrwngriaelacud 4 cud s dwngxathity n ofkshnungkhxngwngri z cudikldwngxathitythisud c sunyklangkhxngwngri p dawekhraahaela a c z displaystyle a cz semimajor axis rayacaksunyklangthungcudikldwngxathitythisud nnkhuxkungaeknexk e c s a displaystyle varepsilon cs over a khwameyuxngsunyklang b a 1 e 2 displaystyle b a sqrt 1 varepsilon 2 kungaeknoth r s p displaystyle r sp rayacakdwngxathitythungdawekhraah n z s p displaystyle nu angle zsp taaehnngdawekhraahtamthiehncakdwngxathity nnkhux mumkwadcringpyhakhuxkarkhanwnphikdechingkhw r n khxngdawekhraahcakewlanbtngaetdawekhraahphancudikldwngxathitythisud t z s x a b z s p displaystyle zsx frac a b cdot zsp z c y z s x displaystyle zcy zsx aela M z c y displaystyle M angle zcy y cakthiehncaksunyklang nnkhuxmumkwadechliy z c y a 2 M 2 lt m a t h lt m a t h gt z s p b a z s x b a z c y b a a 2 M 2 a b M 2 displaystyle zcy frac a 2 M 2 lt math lt math gt zsp frac b a cdot zsx frac b a cdot zcy frac b a cdot frac a 2 M 2 frac abM 2 M 2 p t T displaystyle M 2 pi t over T ody T khuxkhabkarokhcr z c y z s x z c x s c x displaystyle zcy zsx zcx scx a 2 M 2 a 2 E 2 a e a sin E 2 displaystyle frac a 2 M 2 frac a 2 E 2 frac a varepsilon cdot a sin E 2 Division by a 2 gives Kepler s equation M E e sin E displaystyle M E varepsilon cdot sin E E M e 1 8 e 3 sin M 1 2 e 2 sin 2 M 3 8 e 3 sin 3 M displaystyle E approx M left varepsilon frac 1 8 varepsilon 3 right sin M frac 1 2 varepsilon 2 sin 2M frac 3 8 varepsilon 3 sin 3M cdots a cos E a e r cos n displaystyle a cdot cos E a cdot varepsilon r cdot cos nu r a 1 e 2 1 e cos n displaystyle frac r a frac 1 varepsilon 2 1 varepsilon cdot cos nu to get cos E e 1 e 2 1 e cos n cos n e 1 e cos n 1 e 2 cos n 1 e cos n e cos n 1 e cos n displaystyle cos E varepsilon frac 1 varepsilon 2 1 varepsilon cdot cos nu cdot cos nu frac varepsilon cdot 1 varepsilon cdot cos nu 1 varepsilon 2 cdot cos nu 1 varepsilon cdot cos nu frac varepsilon cos nu 1 varepsilon cdot cos nu tan 2 x 2 1 cos x 1 cos x displaystyle tan 2 frac x 2 frac 1 cos x 1 cos x caid tan 2 E 2 1 cos E 1 cos E 1 e cos n 1 e cos n 1 e cos n 1 e cos n 1 e cos n e cos n 1 e cos n e cos n 1 e 1 e 1 cos n 1 cos n 1 e 1 e tan 2 n 2 displaystyle tan 2 frac E 2 frac 1 cos E 1 cos E frac 1 frac varepsilon cos nu 1 varepsilon cdot cos nu 1 frac varepsilon cos nu 1 varepsilon cdot cos nu frac 1 varepsilon cdot cos nu varepsilon cos nu 1 varepsilon cdot cos nu varepsilon cos nu frac 1 varepsilon 1 varepsilon cdot frac 1 cos nu 1 cos nu frac 1 varepsilon 1 varepsilon cdot tan 2 frac nu 2 khundwy 1 e 1 e aelaisrakthisxng caidphllphth tan n 2 1 e 1 e tan E 2 displaystyle tan frac nu 2 sqrt frac 1 varepsilon 1 varepsilon cdot tan frac E 2 inkhnthisamnieracaidkhwamechuxmoyngknrahwangewlakbtaaehnnginwngokhcrkhnthisikhuxkarkhanwnrayahangsunysuriya r cakmumkwadcring n dwykdkhxaerkkhxngekhpelxr r a 1 e 2 1 e cos n displaystyle r a cdot frac 1 varepsilon 2 1 varepsilon cdot cos nu karxnuphthth Derivation kdkhxngniwtn aekikhkarxnuphththkhxngkdekhpelxrkhxthi 2 aekikh m r M m r 2 r G displaystyle m cdot ddot mathbf r frac M cdot m r 2 cdot hat mathbf r cdot G r 8 8 displaystyle dot hat mathbf r dot theta hat boldsymbol theta where 8 displaystyle hat boldsymbol theta is the tangential unit vector and 8 8 r displaystyle dot hat boldsymbol theta dot theta hat mathbf r So the position vector r r r displaystyle mathbf r r hat mathbf r is differentiated twice to give the velocity vector and the acceleration vector r r r r r r r r 8 8 displaystyle dot mathbf r dot r hat mathbf r r dot hat mathbf r dot r hat mathbf r r dot theta hat boldsymbol theta r r r r r r 8 8 r 8 8 r 8 8 r r 8 2 r r 8 2 r 8 8 displaystyle ddot mathbf r ddot r hat mathbf r dot r dot hat mathbf r dot r dot theta hat boldsymbol theta r ddot theta hat boldsymbol theta r dot theta dot hat boldsymbol theta ddot r r dot theta 2 hat mathbf r r ddot theta 2 dot r dot theta hat boldsymbol theta Note that for constant distance r displaystyle r the planet is subject to the centripetal acceleration r 8 2 displaystyle r dot theta 2 and for constant angular speed 8 displaystyle dot theta the planet is subject to the coriolis acceleration 2 r 8 displaystyle 2 dot r dot theta Inserting the acceleration vector into Newton s laws and dividing by m gives the vector equation of motion r r 8 2 r r 8 2 r 8 8 G M r 2 r displaystyle ddot r r dot theta 2 hat mathbf r r ddot theta 2 dot r dot theta hat boldsymbol theta GMr 2 hat mathbf r Equating component we get the two ordinary differential equations of motion one for the radial acceleration and one for the tangential acceleration r r 8 2 G M r 2 displaystyle ddot r r dot theta 2 GMr 2 r 8 2 r 8 0 displaystyle r ddot theta 2 dot r dot theta 0 r 8 displaystyle r dot theta 8 8 2 r r 0 displaystyle frac ddot theta dot theta 2 frac dot r r 0 and integrate log 8 2 log r log ℓ displaystyle log dot theta 2 log r log ell where log ℓ displaystyle log ell is a constant of integration and exponentiate r 2 8 ℓ displaystyle r 2 dot theta ell This says that the specific angular momentum r 2 8 displaystyle r 2 dot theta is a constant of motion even if both the distance r displaystyle r and the angular speed 8 displaystyle dot theta vary The area swept out from time t1 to time t2 t 1 t 2 1 2 b a s e h e i g h t d t t 1 t 2 1 2 r r 8 d t 1 2 ℓ t 2 t 1 displaystyle int t 1 t 2 frac 1 2 cdot base cdot height cdot dt int t 1 t 2 frac 1 2 cdot r cdot r dot theta cdot dt frac 1 2 cdot ell cdot t 2 t 1 depends only on the duration t2 t1 This is Kepler s second law karxnuphththkhxngkdekhpelxrkhxthi 1 aekikh p ℓ 2 G 1 M 1 displaystyle p ell 2 G 1 M 1 u p r 1 displaystyle u pr 1 and get G M r 2 ℓ 2 p 3 u 2 displaystyle GMr 2 ell 2 p 3 u 2 and 8 ℓ r 2 ℓ p 2 u 2 displaystyle dot theta ell r 2 ell p 2 u 2 X d X d 8 8 d X d 8 ℓ p 2 u 2 displaystyle dot X frac dX d theta cdot dot theta frac dX d theta cdot ell p 2 u 2 Differentiate r p u 1 displaystyle r pu 1 twice r d p u 1 d 8 ℓ p 2 u 2 p u 2 d u d 8 ℓ p 2 u 2 ℓ p 1 d u d 8 displaystyle dot r frac d pu 1 d theta cdot ell p 2 u 2 pu 2 frac du d theta cdot ell p 2 u 2 ell p 1 frac du d theta r d r d 8 ℓ p 2 u 2 d d 8 ℓ p 1 d u d 8 ℓ p 2 u 2 ℓ 2 p 3 u 2 d 2 u d 8 2 displaystyle ddot r frac d dot r d theta cdot ell p 2 u 2 frac d d theta ell p 1 frac du d theta cdot ell p 2 u 2 ell 2 p 3 u 2 frac d 2 u d theta 2 Substitute into the radial equation of motion r r 8 2 G M r 2 displaystyle ddot r r dot theta 2 GMr 2 and get ℓ 2 p 3 u 2 d 2 u d 8 2 p u 1 ℓ p 2 u 2 2 ℓ 2 p 3 u 2 displaystyle ell 2 p 3 u 2 frac d 2 u d theta 2 pu 1 ell p 2 u 2 2 ell 2 p 3 u 2 Divide by ℓ 2 p 3 u 2 displaystyle ell 2 p 3 u 2 d 2 u d 8 2 u 1 displaystyle frac d 2 u d theta 2 u 1 u 1 displaystyle u 1 d 2 u d 8 2 u 0 displaystyle frac d 2 u d theta 2 u 0 These solutions are u ϵ cos 8 A displaystyle u epsilon cdot cos theta A where ϵ displaystyle epsilon and A displaystyle A are arbitrary constants of integration So the result is u 1 ϵ cos 8 A displaystyle u 1 epsilon cdot cos theta A Choosing the axis of the coordinate system such that A 0 displaystyle A 0 and inserting u p r 1 displaystyle u pr 1 gives p r 1 1 ϵ cos 8 displaystyle pr 1 1 epsilon cdot cos theta If ϵ lt 1 displaystyle epsilon lt 1 this is Kepler s first law kdekhpelxrkhxthi 3 aekikh T 2 4 p 2 G M r 3 displaystyle T 2 frac 4 pi 2 GM cdot r 3 where T planet s sidereal period r radius of the planet s circular orbit G the gravitational constant M mass of the sun T 2 4 p 2 G M m a 3 displaystyle T 2 frac 4 pi 2 G M m cdot a 3 ody T object s sidereal period a object s semimajor axis G the gravitational constant 6 67 10 11 N m kg M mass of one object m mass of the other object 1 2 1 ϵ a V A d t 1 2 1 ϵ a V B d t displaystyle begin matrix frac 1 2 end matrix cdot 1 epsilon a cdot V A dt begin matrix frac 1 2 end matrix cdot 1 epsilon a cdot V B dt 1 ϵ V A 1 ϵ V B displaystyle 1 epsilon cdot V A 1 epsilon cdot V B V A V B 1 ϵ 1 ϵ displaystyle V A V B cdot frac 1 epsilon 1 epsilon m V A 2 2 G m M 1 ϵ a m V B 2 2 G m M 1 ϵ a displaystyle frac mV A 2 2 frac GmM 1 epsilon a frac mV B 2 2 frac GmM 1 epsilon a V A 2 2 V B 2 2 G M 1 ϵ a G M 1 ϵ a displaystyle frac V A 2 2 frac V B 2 2 frac GM 1 epsilon a frac GM 1 epsilon a V A 2 V B 2 2 G M a 1 1 ϵ 1 1 ϵ displaystyle frac V A 2 V B 2 2 frac GM a cdot left frac 1 1 epsilon frac 1 1 epsilon right V B 1 ϵ 1 ϵ 2 V B 2 2 G M a 1 ϵ 1 ϵ 1 ϵ 1 ϵ displaystyle frac left V B cdot frac 1 epsilon 1 epsilon right 2 V B 2 2 frac GM a cdot left frac 1 epsilon 1 epsilon 1 epsilon 1 epsilon right V B 2 1 ϵ 1 ϵ 2 V B 2 2 G M a 2 ϵ 1 ϵ 1 ϵ displaystyle V B 2 cdot left frac 1 epsilon 1 epsilon right 2 V B 2 frac 2GM a cdot left frac 2 epsilon 1 epsilon 1 epsilon right V B 2 1 ϵ 2 1 ϵ 2 1 ϵ 2 4 G M ϵ a 1 ϵ 1 ϵ displaystyle V B 2 cdot left frac 1 epsilon 2 1 epsilon 2 1 epsilon 2 right frac 4GM epsilon a cdot 1 epsilon 1 epsilon V B 2 1 2 ϵ ϵ 2 1 2 ϵ ϵ 2 1 ϵ 2 4 G M ϵ a 1 ϵ 1 ϵ displaystyle V B 2 cdot left frac 1 2 epsilon epsilon 2 1 2 epsilon epsilon 2 1 epsilon 2 right frac 4GM epsilon a cdot 1 epsilon 1 epsilon V B 2 4 ϵ 4 G M ϵ 1 ϵ 2 a 1 ϵ 1 ϵ displaystyle V B 2 cdot 4 epsilon frac 4GM epsilon cdot 1 epsilon 2 a cdot 1 epsilon 1 epsilon V B G M 1 ϵ a 1 ϵ displaystyle V B sqrt frac GM cdot 1 epsilon a cdot 1 epsilon d A d t 1 2 1 ϵ a V B d t d t 1 2 1 ϵ a V B displaystyle frac dA dt frac frac 1 2 cdot 1 epsilon a cdot V B dt dt begin matrix frac 1 2 end matrix cdot 1 epsilon a cdot V B 1 2 1 ϵ a G M 1 ϵ a 1 ϵ 1 2 G M a 1 ϵ 1 ϵ displaystyle begin matrix frac 1 2 end matrix cdot 1 epsilon a cdot sqrt frac GM cdot 1 epsilon a cdot 1 epsilon begin matrix frac 1 2 end matrix cdot sqrt GMa cdot 1 epsilon 1 epsilon dd T d A d t p a 1 ϵ 2 a displaystyle T cdot frac dA dt pi a sqrt 1 epsilon 2 a T 1 2 G M a 1 ϵ 1 ϵ p 1 ϵ 2 a 2 displaystyle T cdot begin matrix frac 1 2 end matrix cdot sqrt GMa cdot 1 epsilon 1 epsilon pi sqrt 1 epsilon 2 a 2 T 2 p 1 ϵ 2 a 2 G M a 1 ϵ 1 ϵ 2 p a 2 G M a 2 p G M a 3 displaystyle T frac 2 pi sqrt 1 epsilon 2 a 2 sqrt GMa cdot 1 epsilon 1 epsilon frac 2 pi a 2 sqrt GMa frac 2 pi sqrt GM sqrt a 3 T 2 4 p 2 G M a 3 displaystyle T 2 frac 4 pi 2 GM a 3 T 2 4 p 2 G M m a 3 displaystyle T 2 frac 4 pi 2 G M m a 3 Q E D xangxing aekikh Hyman Andrew A Simple Cartesian Treatment of Planetary Motion European Journal of Physics Vol 14 pp 145 147 1993 Kepler s Second Law by Jeff Bryant with Oleksandr Pavlyk The Wolfram Demonstrations Project duephim aekikhKepler problem Circular motion Gravity Two body problem Free fall timeaehlngkhxmulxun aekikhCrowell Benjamin Conservation Laws http www lightandmatter com area1book2 html an online book that gives a proof of the first law without the use of calculus see section 5 2 p 112 David McNamara and Gianfranco Vidali Kepler s Second Law JAVA Interactive Tutorial http www phy syr edu courses java mc html kepler html an interactive JAVA applet that aids in the understanding of Kepler s Second Law University of Tennessee s Dept Physics amp Astronomy Astronomy 161 page on Johannes Kepler The Laws of Planetary Motion 1 Equant compared to Kepler interactive model 2 Kepler s Third Law interactive model 3 ekhathungcak https th wikipedia org w index php title kdkarekhluxnthikhxngdawekhraah amp oldid 8157345, wikipedia, วิกิ หนังสือ, หนังสือ, ห้องสมุด,

บทความ

, อ่าน, ดาวน์โหลด, ฟรี, ดาวน์โหลดฟรี, mp3, วิดีโอ, mp4, 3gp, jpg, jpeg, gif, png, รูปภาพ, เพลง, เพลง, หนัง, หนังสือ, เกม, เกม